
Sound and relatively complete
coeffect and effect refinement type
systems for call-by-push-value PCF

Masterarbeit im Fach Informatik

Master’s Thesis in Computer Science

von / by

Maxi Wuttke

angefertigt unter der Leitung von / supervised by

Prof. Dr. Deepak Garg

begutachtet von / reviewed by

Prof. Dr. Deepak Garg
Prof. Dr. Derek Dreyer

Saarland Informatics Campus, April 2021

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken, 15thApril, 2021

Abstract

In this thesis, we study coeffect-based and effect-based refinement type systems for verifi-
cation and complexity analysis of pure functional recursive programs. These type systems
are relatively complete, which roughly means that they can be fine-tuned either for ex-
pressiveness or for tractability.

We consider two approaches: using coeffects and using effects. For the first approach,
we generalise and simplify previous work by introducing a system that targets a call-by-
push-value (CBPV) version of the programming language PCF, which supports higher-
order recursive functions. We derive soundness and relative completeness for the new
system. From this, these properties also follow for the old systems. In the effect-based
approach, we also target CBPV.

For both approaches, we explain how the systems can be extended with features of
modern programming language like polymorphism. One of the key properties of these
systems is that they are compositional, which enables modular verification. We (inform-
ally) discuss efficient, sound and complete type inference algorithms that exploit this fact.
Finally, we (informally) compare and combine both approaches, and we formalise a sound
and relatively complete coeffect-based system from prior work in the proof assistant Coq.

Acknowledgements

I want to thank my parents and grandparents for their kindness and love.

I want to thank Deepak Garg for advising me during this project. He guided me through
highs and lows and always provided much constructive feedback. He is a great source of
inspiration for me.

I am grateful for the funding provided by the Max Planck Society and the Graduate School
Computer Science at Saarland University.

Further, I want to thank Gert Smolka and Deepak Garg for supporting my application
to the graduate programme at the Max Planck Institute for Software Systems. I am glad
that I got the opportunity to continue pursuing a PhD at MPI SWS after I finished this
thesis.

Last but not least, I am thankful to Derek Dreyer for agreeing to be the second reviewer
of this thesis.

Contents

1 Introduction 1

2 Programming languages preliminaries 7

2.1 System T . 7

2.1.1 Syntax of System T . 7

2.1.2 Semantics of System T . 8

2.1.3 Simple types . 9

2.1.4 Example terms . 12

2.2 The programming language PCF . 13

2.2.1 Call-by-value version (CBV) . 14

2.2.2 Call-by-name version (CBN) . 14

2.2.3 Simple types . 15

2.3 Call-by-push-value . 16

2.3.1 Syntax and semantics . 16

2.3.2 Simple typings . 18

2.3.3 Call-by-name translation . 18

2.3.4 Call-by-value translation . 23

I Coeffect systems 27

3 Introduction 28

3.1 A brief primer on BLL . 28

3.2 From BLL to dℓPCF . 31

3.3 Costs and weights . 33

3.4 Organisation of the remainder of this part 33

4 Index terms (Lℓidx) and dℓT 34

4.1 Types of dℓT (and dℓPCFv) . 34

4.2 Index terms (Lℓidx) and constraints . 35

4.3 Modal sums . 38

4.4 Typing rules . 39

4.5 Meta theory . 42

4.6 Typing example . 44

4.6.1 Addition . 44

4.6.2 Multiplication . 45

4.7 Related work . 45

5 Review of dℓPCFv 47

5.1 Forest Cardinality . 47

5.2 Typing Rules . 49

5.3 Soundness . 50

5.4 Tight bounds and precise typings . 55

5.5 Completeness . 56

5.5.1 PCF skeletons . 57

5.5.2 The explosion typing rule . 59

5.5.3 Creating (bounded) sums . 59

5.5.4 Joining lemmas . 62

5.5.5 Converse substitution . 63

5.5.6 Subject expansion . 64

5.5.7 Completeness for programs . 64

5.5.8 Completeness for natural functions 65

5.6 Embedding of dℓT in dℓPCFv . 68

6 Summary of dℓPCFn 71

6.1 Syntax of dℓPCFn types . 71

6.2 (Bounded) sums . 71

6.3 Typing rules . 72

6.4 Soundness and completeness . 73

7 Call-by-push-value dℓPCFpv 75

7.1 dℓPCFpv types . 75

7.2 Typing Rules . 76

7.3 Call-by-name translation . 76

7.4 Call-by-value translation . 79

7.5 Soundness of dℓPCFpv . 83

7.5.1 Deriving soundness of dℓPCFn and dℓPCFv 88

7.6 Completeness of dℓPCFpv . 89

7.6.1 Preliminaries . 89

7.6.2 Converse substitution . 89

7.6.3 Subject expansion . 91

7.6.4 Completeness for programs . 93

7.6.5 Deriving completeness for dℓPCFn and dℓPCFv 94

7.7 Conjunctives and disjunctives . 96

8 Compositionality and polymorphism 99
8.1 Compositionality . 100

8.1.1 Examples . 103
8.2 Polymorphism . 111

8.2.1 Church encoding . 112
8.3 Compositionality and polymorphism . 114

II Effect Systems 117

9 Introduction 118

10 An effect system for System T: df T 120
10.1 Index terms (Lfidx) and constraints . 120
10.2 Typing rules . 121
10.3 Soundness . 123
10.4 Effect parametricity . 125
10.5 Parametric Completeness . 128
10.6 Annotation Examples . 132

11 An effect system for call-by-push-value PCF 136
11.1 Typing rules . 136
11.2 Soundness . 138
11.3 Semantic soundness . 140
11.4 Parametric Completeness . 141
11.5 Call-by-value version and embedding of df T 144
11.6 Annotation examples . 145
11.7 Extensions of dℓPCFpv . 146

11.7.1 Conjunctives and disjunctives . 146
11.7.2 Polymorphism . 147

III Conclusions 149

12 Discussion and conclusions 150
12.1 Verification and complexity analysis using (co-)effect-based type systems . . 150
12.2 Combining dℓPCF and df PCF . 152
12.3 Other applications of coeffect and effect systems 152
12.4 Other approaches to verification and complexity analysis 153
12.5 Future work . 155

A dℓPCFv Proofs 161
A.1 Completeness . 161

A.1.1 Parametric Joining . 161
A.1.2 Subject Expansion . 164

B Coq formalisation of dℓPCFv 168
B.1 Preliminaries . 168
B.2 Syntax and semantics of PCF . 168
B.3 Index terms, constraints, and types . 170
B.4 dℓPCFv typing rules . 172
B.5 Soundness . 174
B.6 Completeness . 176
B.7 Statistics . 177
B.8 Future mechanisation opportunities . 177

List of Figures

2.1 Head reduction rules and big-step semantics of System T 10
2.2 Simple typing rules of System T . 11
2.3 CBN big-step environment semantics . 15
2.4 Head-reduction rules and big-step operational semantics of CBPV 17
2.5 Simple typing rules of CBPV . 18
2.6 Environment semantics of CBPV . 20

3.1 Rules of intuitionistic logic (IL) . 29
3.2 Rules of intuitionistic linear logic (ILL) . 29
3.3 Rules of bounded linear logic (BLL) . 30

4.1 Semantics of closed Lℓidx terms and constraints 36
4.2 Subtyping and typing rules of dℓT. All rules except iter are also rules of

dℓPCFv. 40

5.1 The fixpoint typing rule of dℓPCFv. All other rules are as in Figure 4.2.
(The rule iter is not present in dℓPCFv.) 50

5.2 Small-step reduction rules with skeletons . 58
5.3 The type B (depicted as a forest) in the embedding of dℓT in dℓPCFv . . . 69

6.1 Subtyping and typing rules of dℓPCFn. 74

7.1 Subtyping and typing rules of dℓPCFpv . 77

8.1 Definition of pa±(ϕ; Σ; E ;A) and pa±(ϕ; Σ; E ;B) 101
8.2 Visualisation of the type Lista<IA as a recursion tree of the right fold operation113
8.3 Example typings of polymorphic list operations cons and app 115

10.1 Subtyping and typing rules of df T . 122
10.2 Examples of parametric types . 127

11.1 Typing rules of df PCFpv . 137
11.2 Typing rules for conjunctives and disjunctives for df PCFpv 147

Chapter 1

Introduction

As safety and performance critical software and hardware systems are ubiquitous, verifi-
cation of these systems is essential. There are various important properties that systems
must fulfil. Perhaps the most well-known class of properties are safety properties, like
functional correctness. A system is said to be correct if it fulfils a functional specification,
i.e. a mathematical mapping of inputs to outputs, and if it never crashes on valid inputs.
However, functional correctness is not enough in practice, since even programs that never
terminate are considered (functionally) ‘correct’. Verification of other properties, like ter-
mination and efficiency, is indispensable for computing systems that ought to compute an
answer in a certain amount of time and use only a certain amount of memory.

In this thesis, we discuss type-based approaches to verification of functional behaviour
and running time of programs.

Type systems Type systems are one of the most-widely used approaches to ‘light-
weight’ program verification, especially in functional programming languages. The famous
slogan by Robin Milner, well-typed programs cannot “go wrong”[29], summarises one of
the merits of type systems, namely that they exclude a (more or less wide) range of errors.
In well-typed programs, type errors (like adding a truth value to a number) are excluded
during program evaluation. Moreover, type systems are usually automated and many
systems provide good feedback to the programmer if there are (potential) errors. One
important property of most type systems is compositionality, which states that separate
components can be typed separately. For example, if we can assign the type Nat→ Bool to
a term t1 and the type Nat to another term t2, then the application of the terms, written
t1 t2, can be assigned the type Bool. This means that t1 expects as input any natural
number and returns a Boolean (truth value). For example, t1 could return true if and only
if the number is even, but this specification is usually not expressed in this type of t1.

The designers of type systems have to find a compromise between expressiveness and
tractability of a type system, since safety properties, in general, are undecidable. On one
extreme, there are dependent type systems, which can be used for specifying and verifying
properties of programs inside the system itself, as dependent types can refer to concrete
terms. For example, the dependent type ∀n : Nat. ({∃n′ : Nat. n = 2n′} + {∃n′ : Nat. n =

2 Introduction

2n′+1}) expresses that a function takes a natural number n as input and either computes
a number n′ such that n = 2n′ or a number n′ such that n = 2n′ + 1. This type suffices
to functionally specify the program.

One famous implementation of such a dependent type system is Coq [38]. Coq’s logic,
the calculus of (co)inductive constructions, employs the proof-as-programs correspondence
(also known as the Curry-Howard isomorphism): Types are seen as propositions and
programs are seen as proofs. For example, the above dependent type states that every
number is either even or odd; a (constructive) ‘proof’ of this fact is a decision procedure
that either yields a proof for “n is even” or “n is odd”. Moreover, one of the main
strengths of Coq is that one can extend its logic (in a sound way) by defining inductive and
coinductive data types. This can be used to embed other programming languages inside
Coq. Moreover, we can prove theorems about embedded programming languages and
propositions about embedded terms. Among many theorems in the theory of programming
languages, it is possible to show that every typed program of the simply typed λ-calculus
terminates (see, e.g. [5]). However, it is not possible to specify the running time of Coq
terms inside Coq itself, although we can reason about the complexity of (deeply) embedded
programs.

Refinement type systems Refinement type systems are less expressive than (fully)
dependent type systems, but are more practical to implement. A well-known problem to
programmers of Standard ML [30] is taking the first element (called the head element) of
a list that is assumed to be non-empty (i.e. non-nil). Such an assumption is usually stated
outside the program, for example in a comment. It is the obligation of the user of the
function to prove that it is not called with an empty list as argument, since the function
could crash otherwise. However, the type checker is not aware of such an assumption, and
therefore emits a warning:

(* hd : list -> int *)

(* The list must be non-nil *)

fun hd (x :: xs) = x (* Warning: match non-exhaustive *)

The type system in [16] overcomes this problem by making it possible to define a type of
non-empty lists that is a refinement of the type of lists. This means, a non-empty list can
be used everywhere were any list is required, but only terms of the type nonEmptyList

can be applied to the function hd, which is assigned the type nonEmptyList -> int. In
this system, it can also be expressed that if a non-empty list is appended to any list, the
resulting list is non-empty.

Refinement type systems can also be used for specifying and verifying functional cor-
rectness of programs [14]. For example, Dependent ML (DML) [39] is an extension of
Standard ML. In contrast to fully dependent type systems, DML has two layers of types
and terms: Index terms (which denote natural numbers) are used to refine the types of
(computational) terms. For example, the type int(I) is only inhabited by the constant
n that is equivalent to the meaning of the index term I. Moreover, assertions and as-
sumptions can be added to types in order to express invariants. For example, the type

3

∃a. (int(a) ∧ a > 0) stands for the positive natural numbers. Lists can be refined with
their length. For example, the application function can be assigned the following type:

∀i1 i2. (list(i1)→ list(i2)→ list(i1 + i2))

If we combine refined base types with quantification over index terms, we can also specify
the functional behaviour of functions on integers or natural numbers. For example, the
type ∀a. (int(a)→ int(I(a))) stands for functions that take an integer a as argument and
compute a number that is equivalent to the index term I(a). Note that this approach is
different from (fully) dependent types, since we only quantify over type refinements, not
over arbitrary language terms.

Subtyping obligations in DML are reduced to assertions on propositions on index terms.
For example, the subtyping judgement int(I1) ⊑ int(I2) holds if and only if the two index
terms I1 and I2 are equivalent. DML is parametrised by a language L of index terms. Thus,
if one chooses a computationally tractable language of index terms, off-the-shelf tools like
SMT solvers can be used to discharge most assertions. In case the solver fails to prove
the obligations, this could either mean that the subtyping does not hold or that the solver
was not powerful enough to discharge the obligation. In the latter case, the user could
prove the obligations, e.g. with the help of an interactive proof assistant. However, this
contradicts the goal of automation, since the user would have to re-prove these obligations
every time the code is changed. Yet, if we assume that L is sufficiently expressive and its
theory is complete, DML is complete. This phenomena, called relative completeness, also
holds for both families of type systems that we discuss in this thesis, namely dℓPCF and
df PCF. In other words, the systems are complete relative to completeness of the language
of index terms.

Effects and coeffects Before we discuss how refinement type systems can be used for
complexity analysis, we first discuss two fundamental concepts: Effects and coeffects are
two dual views on how a program interacts with its environment. We use the word en-
vironment in an abstract sense here. Most programs, for example, depend on operating
systems and software libraries, and some programs may even require specialised hardware.
Moreover, restrictions on time and space are also crucial for applications of software sys-
tems, and they are thus also part of the ‘environment’. In embedded systems, for example,
programs can only use a constant amount of memory, which should ideally be low. Sim-
ilarly, real-time and security-critical systems ought to compute an answer in predictable
time.

Effects, roughly, are interactions of the program with its environment that are initiated
by the program. For example, most programs produce some kind of output. In imperative
programming languages it is possible to change the value of variables that are shared among
different parts of the program. In particular, incrementing a global counter constitutes
an effect. Moreover, many programming languages provide primitives for modifying the
execution stack, for example by throwing an exception or aborting the program, or by
spawning sub-processes.

4 Introduction

On the other hand, coeffects [33, 32] describe how the environment affects the program.
For example, a program may need to read data from a file or sensors, interact with
POSIX-like environment variables, or use up certain abstract resources. One can think
of many kinds of resources. For example, the program may only be allowed to allocate a
certain amount of memory. It may have to ‘pay’ for certain operations, which is useful for
amortised cost analysis [37].

Effect and coeffect type systems are type systems that are augmented with effects and
coeffects, respectively. Effect type systems can be used, for example, to analyse to which
memory cells a program may potentially write. Coeffect systems can be used to enforce
that a program only refers to a variable a certain number of times.

(Co)effect type systems for cost analysis We define the cost of a (terminating)
program as the number of times certain operations are executed during its execution. For
example, the cost of an execution could be defined as the number of times a variable is
accessed or a function is applied.

So how can effects and coeffects be used to analyse the cost of programs? From
the perspective of effects, we view these ‘costly’ operations as effectful operations that
increment a virtual global counter. Effect type systems for cost analysis can bound the
number of times this virtual counter is incremented.

Coeffect type systems do not directly analyse the number of times costly operations
are executed. Instead, every execution of such an operation constitutes a use of one
abstract resource. Coeffect systems thus bound the number of times these resources can
potentially be consumed. To analyse the cost of a closed program, we count how many of
these resources are allocated, since a (closed) program can only use these resources that
are part of its input or are allocated by the program itself. This idea actually comes from
linear logic [18] and bounded linear logic [19] in particular. We will discuss the connection
between the coeffect-based systems and (bounded) linear logic in more detail later.

Call-by-push-value The same program can have different costs if the programming
language admits different executions. In other words, costs depend on the evaluation
strategy (e.g. call-by-name (CBN) or call-by-value (CBV), which we will recapitulate later).
This is one of the reasons why we need different type systems for different evaluation
strategies.

Call-by-push-value (CBPV) [27] is a paradigm that subsumes the call-by-name and
call-by-value strategies. It is based on the idea that “a value is, a computation does”.
Subsumption implies that there are two translations of programs to call-by-push-value
programs – a CBN translation and a CBV translation. It can be shown that a program and
its CBN/CBV translation behave observationally equivalent to its CBN/CBV semantics.
Moreover, for different kinds of (concrete or abstract) semantics, call-by-name and call-
by-value semantics can be ‘translated’ to call-by-push-value semantics. Subsumption also
makes it possible that once we have proved, for example, a semantic soundness theorem
for CBPV, the theorem can be ‘translated back’ to the respective theorems for CBN and
CBV. We will discuss CBPV in more detail in Section 2.3.

5

In prior work, coeffect-based type systems for a call-by-name programming language
(dℓPCFn [11]) and a call-by-value programming language (dℓPCFv [12]) have been de-
veloped. We introduce a new system, dℓPCFpv, that targets a call-by-push-value language,
and show that this system in fact subsumes the two prior systems in the above sense.

Contributions of this thesis First, we unify and simplify prior work on coeffect-based
systems for verification and complexity analysis. More concretely, we:

• simplify the formal proof of soundness and relative completeness of dℓPCFv;

• we introduce a new system dℓPCFpv that subsumes the call-by-name and call-by-
value version of dℓPCF;

• thereby, we derive proofs of the above properties for the two other systems;

• we review and generalise a type inference algorithm for dℓPCF, and we add support
for polymorphism.

In the second part, we:

• introduce new effect-based type systems (the df PCF family);

• and we introduce type inference algorithms for these systems.

We also (informally) compare the two approaches and discuss their strengths and weak-
nesses.

Structure of this thesis In the next chapter, we will first define the programming lan-
guages that we target for our type systems, namely System T and PCF [34]. In particular,
we recapitulate a call-by-push-value version of PCF (which we call CBPV) in Section 2.3.

The remainder of this thesis is structured in two main parts, in which we study coeffect-
based (dℓPCF) and effect-based systems (df PCF), respectively.

In Part I, we consider the coeffect-based approach to our problem. We first explain and
motivate, in Chapter 3, the basic ideas of dℓPCF from the perspective of bounded linear
logic [19]. Afterwards, we introduce a type system for System T, which is a total language.
In this chapter, we also introduce the index term language Lℓidx that is used for the systems
in the first part. Then, we review the call-by-value version of dℓPCF in Chapter 5, where
we need to consider unbounded recursion. In Chapter 6, we briefly recapitulate the call-
by-name version of dℓPCF, but we do not spell out any proofs. We introduce dℓPCFpv,
in Chapter 7, and we show that it subsumes the other two versions of dℓPCF and derive
soundness and relative completeness for all versions of dℓPCF. We also discuss how we can
extend dℓPCF with product and sum types. In Chapter 8, we first discuss a type inference
algorithm for dℓPCFpv, which is based on a similar algorithm in [13]. Furthermore, we
extend the language with polymorphism and show how polymorphism can be used to
encode bounded recursive data types. Finally, we observe that polymorphism does not
pose a problem for the type inference algorithm.

6 Introduction

In the introductory chapter of Part II, we first explain the main weak points of the
first approach, and we discuss how we tackle these problems in the effect-based approach.
Again, we start with a system for System T, in Chapter 10, where we also introduce a new
index term language, Lfidx , and prove compositional completeness using a type inference
algorithm. Then, we generalise this system to CBPV and extend the algorithm.

In the last part of this thesis, we discuss and compare the coeffect and effect-based
approaches. We outline how the coeffect and effect systems can be combined, which
makes the coeffect system more expressive. Finally, we summarise other approaches to
verification and complexity analysis, and propose future work.

In Appendix A, we list proofs that are omitted in the main part. In Appendix B, we
outline our Coq formalisation of dℓPCFv.

Chapter 2

Programming languages
preliminaries

In this chapter, we first recapitulate some simple programming languages. The coeffect-
based and effect-based type systems that we will discuss in this thesis are refinements
of the simple type systems that we present in this chapter. This means that typings in
dℓPCFv, for example, have the same structure as simple PCF typings, but they contain
additional information. In other words, a dℓPCFv typing can be converted to a (simple)
PCF typing by removing the refinements.

2.1 System T

System T1 is a total (and thus Turing incomplete) programming language, which means
that all well-typed programs terminate. Yet, it is very expressive (at least in an extensional
sense): All total natural functions of intuitionistic arithmetic (equivalently, all higher-order
primitive recursive functions) can be encoded in System T. These properties makes it an
attractive programming language for type-based complexity analysis, as we do not have
to deal with non-termination.

2.1.1 Syntax of System T

We consider a version of System T with natural numbers, λ-abstractions, higher-order
iteration, and binary sums and products.

Terms: t ::= v
∣∣ x ∣∣ t1 t2 ∣∣ ifz t1 then t2 else t3 ∣∣ Succ(t) ∣∣ Pred(t)∣∣ ⟨t1; t2⟩ ∣∣ π1(t) ∣∣ π2(t) ∣∣ inl(t) ∣∣ inr(t) ∣∣ case t [inl(x)⇒ t1 | inr(y)⇒ t2]

Values: v ::= n
∣∣ λx. t ∣∣ iter t1 t2 ∣∣ ⟨⟩ ∣∣ ⟨v1; v2⟩ ∣∣ inl(v)

∣∣ inr(v)

The meta variables i, n and k range over natural numbers, x over (term) variables, t over
terms. The symbol v is used for values, which are a subset of terms that are already fully

1System T was introduced by Gödel in an article about proof theory in the Dialectica journal in 1958.

8 Programming languages preliminaries

evaluated. In other words, they are terminal, or in normal form. Note that a tuple is a
value if and only if both of its components are values. One can also derive n-ary products
and projections as syntactic sugar.

The ifz operator first evaluates t1 to a constant n. If it is zero, the execution is
continued in t2, and in t3 otherwise.

Free variables of terms are defined in the standard way. Terms without free variables
are called closed (and open otherwise). We consider terms to be equal if they are equivalent
up to variable renaming. In the entire thesis, we never substitute open terms for variables,
since we never reduce below binders. Thus, capturing of variable names cannot happen,
since only closed terms are executed. When we introduce new binders, we always assume
that they are fresh.

Substitution of closed terms for variables is defined in the standard way:

Definition 2.1 (Substitution). Let t′ be a closed term and let t a term that may have
the variable x free. We define t{t′/x} by recursion on t:

y{t′/x} :=

{
t′ x = y

y x ̸= y

(λy. t){t′/x} := λy. t{t′/x}
(ifz t1 then t2 else t3){t′/x} := ifz t1{t′/x} then t2{t′/x} else t3{t′/x}

(Succ(t)){t′/x} := Succ(t{t′/x})
(Pred(t)){t′/x} := Pred(t{t′/x})
⟨t1; t2⟩ {t′/x} := ⟨t1{t′/x}; t2{t′/x}⟩
(πi(t)){t′/x} := πi(t{t′/x})
(inl(t)){t′/x} := inl(t{t′/x})
(inr(t)){t′/x} := inr(t{t′/x})

(case t [inl(y1)⇒ t1 | inr(y2)⇒ t2]){t′/x} := case t{t′/x} [inl(y1)⇒ t1{t′/x} | inr(y2)⇒ t2{t′/x}]
(iter t1 t2){t′/x} := iter (t1{t′/x}) (t2{t′/x})

In the λ and case distinction cases, we assume (as usual) that the binder variables are
distinct from the substituted variable. Moreover, we can do a sequence of substitutions:

t{t1/x1, . . . , tn/xn} := t{t1/x1} · · · {tn/xn}

The order of the substitutions does not matter, since we always assume that the terms
t1, . . . , tn are closed.

2.1.2 Semantics of System T

Our variant of System T has call-by-value semantics. This means that in an application
t1 t2, t1 and t2 first have to be evaluated. In particular, t1 has to evaluate either to a
λ-abstraction or to an iteration. If t1 evaluates to an iteration, the argument t2 has to
evaluate to a number. Similarly, before we can project a tuple or do a case analysis on a
sum, it has to be fully evaluated first.

System T 9

The small-step semantics is augmented with a cost i for each step: t1 ≻i t2, which
may either be 0 or 1. It is 1 for β-substitutions and iter unfolding, and 0 otherwise. We
write t ≻ t′ if we do not care about the cost. Both kinds of semantics are summarised
in Figure 2.1. We use program contexts to streamline the definition of the small-step
semantics:

C ::= •
∣∣ C t2

∣∣ v1C ∣∣ ifzC then t2 else t3
∣∣ ⟨C; t2⟩

∣∣ ⟨v1;C⟩∣∣ inl(C)
∣∣ inr(C)

∣∣ caseC [inl(x)⇒ t1 | inr(y)⇒ t2]

A reduction t ≻i t
′ is either a head reduction (with the rules depicted in Figure 2.1), or a

reduction inside a program context:2

t ≻i t
′

C[t] ≻i C[t′]

Note that the head reduction rule for iteration implies that t1 has to be (re-)executed
for every iteration. We choose these semantics in order to make it possible to define both
a coeffect and an effect type system for System T. However, if we want to avoid having
t1 executed for every iteration, we can transform the code using an eta-expansion, i.e.
substitute iter t1 t2 with (λx. iter x t2) t1.

We also define big-step semantics: t ⇓i v means that t evaluates to v, and the cost of
this evaluation is i. It is easy to prove that small-step and big-step semantics agree.

Lemma 2.2 (Agreement of the small-step and big-step semantics). Let t be a term and
let v be a value. Then the following propositions are equivalent:

• t ⇓i v

• t ≻∗i v, where ≻∗· sums up the cost of multiple steps:

v ≻∗0 v
t ≻i1 t′ t′ ≻∗i2 v

t ≻∗i1+i2 v

2.1.3 Simple types

We define a simple type system for System T with the following types:

A ::= Nat
∣∣A1 → A2

∣∣A1 ×A2

∣∣A1 + A2

Γ ::= ∅
∣∣ x : A,Γ

Typing contexts (contexts for short) assign a type to every free variable of a term. The
empty context (∅) can thus only be used for closed terms. The context x : A,Γ assigns
the type A to x and otherwise behaves like Γ; we assume that x is not in the domain of
Γ. The ‘order’ of the variables in the context is thus irrelevant. We can also see contexts
as a partial mapping from variables to types: Γ(x) is the type of x in the context Γ.

10 Programming languages preliminaries

(λx. t) v ≻1 t{v/x} (iter t1 t2) 0 ≻1 t2 (iter t1 t2) 1 + n ≻1 t1 (iter t1 t2 n)

ifz 0 then t2 else t3 ≻0 t2 ifz 1 + n then t2 else t3 ≻0 t3 πk ⟨v1; v2⟩ ≻0 vk

Succ(n) ≻0 1 + n Pred(n) ≻0 n
.− 1

case inl(v) [inl(x)⇒ t1 | inr(y)⇒ t2] ≻0 t1{v/x}

case inr(v) [inl(x)⇒ t1 | inr(y)⇒ t2] ≻0 t2{v/y}

t1 ⇓i1 λx. t t2 ⇓i2 v t{v/x} ⇓i3 v′

t1 t2 ⇓1+i1+i2+i3 v′
t1 ⇓i1 iter t′1 t2 t3 ⇓i2 0 t2 ⇓i3 v

t1 t3 ⇓1+i1+i2+i3 v

t1 ⇓i1 iter t′1 t2 t3 ⇓i2 1 + n t′1 (iter t′1 t2 n) ⇓i3 v

t1 t3 ⇓1+i1+i2+i3 v

t1 ⇓i1 0 t2 ⇓i2 v

ifz t1 then t2 else t3 ⇓i1+i2 v

t1 ⇓i1 1 + n t3 ⇓i2 v

ifz t1 then t2 else t3 ⇓i1+i2 v

t ⇓i n
Succ(t) ⇓i 1 + n

t ⇓i n
Pred(t) ⇓i n .− 1

tk ⇓ik vk for k = 1, 2

⟨t1; t2⟩ ⇓i1+i2 ⟨v1; v2⟩
t ⇓i ⟨v1; v2⟩
πk(t) ⇓i vk

v ⇓0 v

t1 ⇓i1 inl(v) t2{v/x} ⇓i2 v′

case t1 [inl(x)⇒ t2 | inr(y)⇒ t3] ≻0 v
′

t1 ⇓i1 inr(v) t3{v/y} ⇓i2 v′

case t1 [inl(x)⇒ t2 | inr(y)⇒ t3] ≻0 v
′

Figure 2.1: Head reduction rules and big-step semantics of System T

System T 11

Const

Γ ⊢ n : Nat
Var

x : A,Γ ⊢ x : A

Lam
x : A,Γ ⊢ t : B

Γ ⊢ λx. t : A→ B

Iter
Γ ⊢ t1 : A→ A Γ ⊢ t2 : A

Γ ⊢ iter t1 t2 : Nat→ A

Succ
Γ ⊢ t : Nat

Γ ⊢ Succ(t) : Nat

Pred
Γ ⊢ t : Nat

Γ ⊢ Pred(t) : Nat

App
Γ ⊢ t1 : A→ B Γ ⊢ t2 : A

Γ ⊢ t1 t2 : B

Ifz
Γ ⊢ t1 : Nat Γ ⊢ t2 : B Γ ⊢ t3 : B

Γ ⊢ ifz t1 then t2 else t3 : B

Tuple
Γ ⊢ tk : Ak for k = 1, . . . , 1

Γ ⊢ ⟨t1; t2⟩ : A1 ×A2

Proj
Γ ⊢ t : A1 ×A2

Γ ⊢ πi(t) : Ai

Inl
Γ ⊢ t : A1

Γ ⊢ inl(t) : A1 + A2

Inr
Γ ⊢ t : A2

Γ ⊢ inr(t) : A1 + A2

CaseSum
Γ ⊢ t1 : A1 + A2 x : A1,Γ ⊢ t2 : B y : A2,Γ ⊢ t3 : B

Γ ⊢ case t1 [inl(x)⇒ t2 | inr(y)⇒ t3] : B

Figure 2.2: Simple typing rules of System T

12 Programming languages preliminaries

The typing rules (which are all standard), are showed in Figure 2.2. The following
properties are standard:

Lemma 2.3 (Substitution). If x : A1,Γ ⊢ t : A2 and ∅ ⊢ v : A1, then Γ ⊢ t{v/x} : A2.

Lemma 2.4 (Subject reduction). If ∅ ⊢ t : A and t ≻ t′, then ∅ ⊢ t′ : A.

Lemma 2.5 (Progress). If ∅ ⊢ t : A, then either t is a value, or there exists a successor
term t ≻ t′.

A program is a closed term with the simple type Nat. By the above lemmas, a program
either diverges or evaluates to a constant.

2.1.4 Example terms

Primitive recursive functions are those natural functions that can be computed by iterating
over a number. For example, we can implement addition and multiplication in System T:

s := λx. Succ(x) : Nat→ Nat

add := λx. iter s x : Nat→ Nat→ Nat

mult := λx. iter (add x) 0 : Nat→ Nat→ Nat

System T, however, is more expressive since we can also construct (higher-order) func-
tions through iteration. The archetypal example for a higher-order primitive recursive
function is the Ackermann function, which is defined by the following equations:

ack 0 n := n + 1

ack (m + 1) 0 := ack m 1

ack (m + 1) (n + 1) := ack m (ack (m + 1)n)

To implement this function in System T, observe that ack (m + 1)n is called in the third
line – with smaller n. In each of the other recursive calls in the second and third line,
ack m is used – with smaller m. Thus we can refactor the last two lines and store the
result of ack m in a temporary variable x. The last two lines then amount to an iteration
over n, where x is used in each case of the iteration:

ack 0 := s

ack (1 + m) := ack ′ (ack m)

ack ′ x := λn.

{
x 1 n = 0

x (ack ′ x (n− 1)) n > 0

This can now very elegantly be implemented in System T:

ack := iter u s

u := λx. iter x (x 1)

2C[t] substitutes t for the • in C.

The programming language PCF 13

m\n 0 1 2 3 4

0 1; 2 2; 2 3; 2 4; 2 5; 2
1 2; 5 3; 7 4; 9 5; 11 6; 13
2 3; 10 5; 19 7; 32 9; 49 11; 70
3 5; 22 13; 113 29; 548 61; 2439 125; 10314

Table 2.1: Values and costs (separated by semicolons) for some inputs of the System T
program ack mn

Here is an execution protocol for ack 1 1, which computes to 3 with a cost of 7:

ack 1 1 = (iter u s 1) 1 ≻ (u (iter u s 0)) 1 ≻ (u s) 1

≻ (iter s (s 1)) 1 ≻ s (iter s (s 1) 0) ≻ s (s 1) ≻ s 2 ≻ 3

In Table 2.1, we show some values of the Ackermann function. The second entry in each
cell is the cost of the execution of ack ; it has been computed using a simple System T
interpreter implemented in Haskell. Values outside the range of the table grow extremely
fast.

It is a well-known result that, although System T is quite expressive, it is often not
the case that functions can be implemented efficiently. For example, an implementation
of a function min that computes the minimum of two numbers cannot be implemented
in O(min(a, b)); only O(a + b) is possible [10]. The (informal) reason for this is that we
can only iterate over one number. In other words, it is not possible in the call-by-value
System T to break out of a loop.

2.2 The programming language PCF

PCF (programming computable functions) [34] is a simple functional Turing-complete lan-
guage. It has all the features of System T, but, instead of iteration, we have unbounded
recursion. Of course, removing iteration is not a restriction, since iteration can be im-
plemented using recursion. Implementing iteration as syntactic sugar also preserves the
cost of an execution, which we will exploit in Section 5.6, where we will show that a
coeffect-based type system for System T can be embedded inside such a system for PCF.

We consider two semantics of PCF: call-by-value (CBV) and call-by-name (CBN). Both
variants have the same syntax (although we will need to introduce a syntactic restrictions
on fixpoints in the CBV setting), but they have different evaluation strategies, as we will
discuss below.

t ::= x
∣∣ t1 t2 ∣∣ ifz t1 then t2 else t3 ∣∣ Succ(t) ∣∣ Pred(t)

∣∣ ⟨t1; t2⟩ ∣∣ πn(t)∣∣ inl(t) ∣∣ inr(t) ∣∣ case t [inl(x)⇒ t1 | inr(y)⇒ t2]
∣∣ n ∣∣ λx. t ∣∣ µx. t

14 Programming languages preliminaries

2.2.1 Call-by-value version (CBV)

In the call-by-value version of PCF, abbreviated CBV, the argument t2 of an application
t1 t2 first has to compute to a value. Values are the following subset of terms:

v ::= n
∣∣ λx. t ∣∣ µf. λx. t ∣∣ ⟨v1; v2⟩ ∣∣ inl(v)

∣∣ inr(v)

In CBV, we only allow fixpoints of the shape µf. λx. t, which we abbreviate to µfx. t.
In addition to the small-step and big-step operational semantics rules of System T

(which also has call-by-value semantics) in Figure 2.1, CBV has the following rules:

(µfx. t) v ≻1 t{µfx. t/f, v/x}
t1 ⇓i1 µfx. t t2 ⇓i2 v1 t{µfx. t/f, v1/x} ⇓i3 v2

t1 t2 ⇓1+i1+i2+i3 v2

2.2.2 Call-by-name version (CBN)

In the call-by-name semantics of PCF, arguments are not evaluated before being substi-
tuted for variables. In particular, we have the following head reduction rules:

(λx. t) t′ ≻ t{t′/x} πk ⟨t1; t2⟩ ≻ tk µx. t ≻ t{µx. t/x}

case inl(t) [inl(x)⇒ t1 | inr(y)⇒ t2] ≻ t1{t/x}

case inr(t) [inl(x)⇒ t1 | inr(y)⇒ t2] ≻ t2{t/y}

Closed terms evaluate to terminal terms (T) (we reserve the word value for the call-by-
value setting):

T ::= n
∣∣ λx. t ∣∣ ⟨t1; t2⟩ ∣∣ inl(t) ∣∣ inr(t)

Observe that the components of products are only evaluated after we apply projections.
Furthermore, a sum is already terminal after the constructor (inl or inr) is known. In
particular, inl(µx. x) is a terminal term, but not a value (in CBV).

The cost of a CBN execution is defined by the number of variable lookups. We will
discuss later why this cost metric is useful. However, variable lookups cannot be counted
using the ordinary substitution-based semantics. Therefore, we define big-step semantics
using environments and closures.

Definition 2.6 (Closures and environments). Environments and (terminal) closures are
defined by mutual induction:

c ::= ⟨t; ξ⟩ tc ::= ⟨T ; ξ⟩ ξ ::= ∅
∣∣ x 7→ c, ξ

• An environment ξ is a partial mapping from variables to closures.

• A closure c = ⟨t; ξ⟩ is a tuple of a term and an environment.

• A terminal closure ⟨T ; ξ⟩ is a closure of which the term is terminal.

The programming language PCF 15

tc ⇓0 tc
ξ(x) ⇓i tc
⟨x; ξ⟩ ⇓1+i tc

⟨t; ξ⟩ ⇓i ⟨k; ξ′⟩
⟨Succ(t); ξ⟩ ⇓i ⟨1 + k; ξ′⟩

⟨t; ξ⟩ ⇓i ⟨k; ξ′⟩
⟨Pred(t); ξ⟩ ⇓i ⟨k .− 1; ξ′⟩

⟨t;x 7→ ⟨µx. t; ξ⟩ , ξ⟩ ⇓i tc
⟨µx. t; ξ⟩ ⇓i tc

⟨t1; ξ⟩ ⇓i1 ⟨λx. t′; ξ′⟩
⟨t′;x 7→ ⟨t2; ξ⟩ , ξ′⟩ ⇓i2 tc

⟨t1 t2; ξ⟩ ⇓i1+i2 tc

⟨t1; ξ⟩ ⇓i1 ⟨0; ⟩ ⟨t2; ξ⟩ ⇓i2 tc

⟨ifz t1 then t2 else t3; ξ⟩ ⇓i1+i2 tc

⟨t1; ξ⟩ ⇓i1 ⟨1 + k; ⟩ ⟨t3; ξ⟩ ⇓i3 tc

⟨ifz t1 then t2 else t3; ξ⟩ ⇓i1+i3 tc

⟨t; ξ⟩ ⇓i1 ⟨⟨t1; t2⟩; ξ′⟩ ⟨tk; ξ′⟩ ⇓i2 tc

⟨πk(t); ξ⟩ ⇓i1+i2 tc

⟨t1; ξ⟩ ⇓i1 ⟨inl(t′1); ξ′⟩ ⟨t2;x 7→ ⟨t′1; ξ′⟩ , ξ′⟩ ⇓i2 tc

⟨case t1 [inl(x)⇒ t2 | inr(y)⇒ t3]; ξ⟩ ⇓i1+i2 tc

⟨t1; ξ⟩ ⇓i1 ⟨inr(t′1); ξ′⟩ ⟨t3; y 7→ ⟨t′1; ξ′⟩ , ξ′⟩ ⇓i3 tc

⟨case t1 [inl(x)⇒ t2 | inr(y)⇒ t3]; ξ⟩ ⇓i1+i3 tc

Figure 2.3: CBN big-step environment semantics

• A closure ⟨t; ξ⟩ is closed, if all free term variables in t are bound in ξ and if all
closures for these free variables are also closed closures.

The call-by-name big-step environment semantics are shown in Figure 2.3. The relation
· ⇓i · is a partial and deterministic mapping from closed closures to closed terminal closures,
where i is the number of variable lookups. Note that in the variable rule, ξ(x) may be a
non-terminal closure, so it needs to be evaluated first, and we increment the counter.

We can unfold closed closures to closed terms:

unf (⟨t;x1 7→ c1, . . . , xn 7→ cn⟩) := t{unf (c1)/x1, . . . , unf (cn)/xn}

We can now define executions of closed terms: We write t ⇓k T if there is a terminal
closure tc such that ⟨t; ∅⟩ ⇓k tc such that unf (tc) = T . Note that T must be a closed
terminal term.

If we are not interested in costs, we can also use similar big-step and small-step se-
mantics as in CBV.

2.2.3 Simple types

Like System T, both variants of PCF are simply typed. In addition to the typing rules of
System T (see Figure 2.2, except iteration), we introduce the following rule for fixpoints:

Fix
x : B,Γ ⊢ t : B

Γ ⊢ µx. t : B

16 Programming languages preliminaries

Remember that if we are in the CBV setting, t must be a λ-abstraction, and thus B must
be an arrow type.

We can also prove subject reduction and progress for both variants of PCF:

Lemma 2.7 (Subject reduction). If Γ ⊢ t : A and t ≻ t′, then Γ ⊢ t′ : A.

Lemma 2.8 (Progress). If ∅ ⊢ t : A, then either t is a (CBV or CBV) value/terminal
term, or there exists a successor term t ≻ t′ (in the CBV or CBV semantics, respectively).

2.3 Call-by-push-value

In this section, we introduce a programming language based on the call-by-push-value
(CBPV) paradigm [27]. Call-by-push-value is a “subsuming paradigm”, which (roughly)
means that we can use it for simulating both call-by-value and call-by-name executions and
semantics. In this thesis, we will use CBPV to generalise coeffect-based and effect-based
type systems. The general idea is that if we have proved a theorem about the system
CBPV, we get the same result for the CBV and CBN systems (almost) for free.

2.3.1 Syntax and semantics

CBPV is based on the idea that “a value is, a computation does”. Values and computations
are two syntactic categories. Computations do, since we define the operational semantics
on computations. A computation (t) evaluates to a terminal computation (T), which is
either a returned value (return v) or a λ-abstraction.

Values: u, v ::= x
∣∣ n ∣∣ thunk t

Computations: t ::= force v
∣∣ return v ∣∣ t v ∣∣ bindx← t1 in t2∣∣ ifz v then t1 else t2 ∣∣ λx. t ∣∣ µx. t∣∣ calcx← Succ(v) in t

∣∣ calcx← Pred(v) in t

Terminal computations: T ::= return v
∣∣ λx. t

• Since variables are placeholders for values, they belong to the syntactic category of
values. We can thus only substitute values for variables.

• return and bind are well-known operators in monadic programming. The terminal
computation return v denotes that the computation is finished and the result of the
computation is v. The computation bindx ← t1 in t2 first executes t1. After t1
returns a value v, v is substituted for x in t2, which is then executed. We use
bindx← t1, y ← t2 in t3 as syntactic sugar for bindx← t1 in bind y ← t2 in t3.

• Computations can be thunked (or suspended). For a computation t, thunk t is a
value that can be forced, which means that the computation t is executed.

• Arithmetic operations like case distinction and successor require that the argument
is a value v. In a well-typed program, v can either be a constant or a variable. In

Call-by-push-value 17

force thunk t ≻1 t bindx← return v in t2 ≻0 t2{v/x}

(λx. t) v ≻0 t{v/x} µx. t ≻0 t{thunkµx. t/x}

calcx← Succ(n) in t ≻0 t{1 + n/x} calcx← Pred(n) in t ≻0 t{n .− 1/x}

ifz 0 then t1 else t2 ≻0 t1 ifz 1 + n then t1 else t2 ≻0 t2

t ⇓i T
force thunk t ⇓1+i T

t1 ⇓i1 return v t2{v/x} ⇓i2 T

bindx← t1 in t2 ⇓i1+i2 T

t ⇓i1 λx. t′ t′{v/x} ⇓i2 T

t v ⇓i1+i2 T

t{thunkµx. t/x} ⇓i T
µx. t ⇓i T

t2{1 + n/x} ⇓i T
calcx← Succ(n) in t ⇓i T

t2{n .− 1/x} ⇓i T
calcx← Pred(n) in t ⇓i T

t1 ⇓i T
ifz 0 then t1 else t2 ⇓i T

t2 ⇓i T
ifz 1 + n then t1 else t2 ⇓i T

Figure 2.4: Head-reduction rules and big-step operational semantics of CBPV

the latter case, if the computation is closed, v will eventually be substituted with a
constant. The computation calcx← Succ(n) in t reduces to t{1 + n/x}.

• Note that in an application t v, the argument has to be a value. If we do not want
that the argument is evaluated (e.g. as in call-by-name semantics), we can thunk it.

• Fixpoints (µx. t) are not terminal computations. They are unfolded, which means
that they reduce to t{thunkµx. t/x}.

The syntax for CBPV that we use in this thesis is similar to [24]. CBPV also supports
product and sum types, which we will discuss later.

Operational semantics of CBPV Closed computations may diverge or evaluate to a
closed terminal closure. In the small-step and big-step semantics depicted in Figure 2.4,
we count the number of forcing steps, i.e. force thunk t ≻1 t. From the syntax it is already
clear that reductions can only happen below the left side of applications and below the
bind operation. This suggests the following definition of evaluation contexts:

C ::= •
∣∣ C v

∣∣ bindx← C in t

18 Programming languages preliminaries

Const
Γ ⊢v n : Nat

Var
x : A,Γ ⊢v x : A

Lam
x : A,Γ ⊢c t : B

Γ ⊢c λx. t : A→ B

Fix
x : UB,Γ ⊢c t : B

Γ ⊢c µx. t : B

App
Γ ⊢c t : A→ B Γ ⊢v v : A

Γ ⊢c t v : B

Ifz
Γ ⊢v v : Nat Γ ⊢c t2 : B Γ ⊢c t3 : B

Γ ⊢c ifz v then t2 else t3 : B

Succ
Γ ⊢v v : Nat x : Nat,Γ ⊢c t : B

Γ ⊢c calcx← Succ(v) in t : B

Pred
Γ ⊢c t1 : FNat x : Nat,Γ ⊢c t : B

Γ ⊢c calcx← Pred(t1) in t2 : B

Return
Γ ⊢v v : A

Γ ⊢c return v : FA

Bind
Γ ⊢c t1 : FA x : A,Γ ⊢c t2 : B

Γ ⊢c bindx← t1 in t2 : B

Thunk
Γ ⊢c t : B

Γ ⊢v thunk t : UB

Force
Γ ⊢v v : UB

Γ ⊢c force v : B

Figure 2.5: Simple typing rules of CBPV

2.3.2 Simple typings

There are two categories of types: value types and computation types.

Definition 2.9 (Simple CBPV types).

Value types: A ::= UB
∣∣ Nat

Computation types: B ::= FA
∣∣A→ B

Contexts: Γ,∆ ::= ∅
∣∣ x : A,Γ

The simple typing rules are depicted in Figure 2.5. We can also add sum and product
types to CBPV, but we will consider these types later.

2.3.3 Call-by-name translation

In the following, we show how to translate a PCF term t to a CBPV computation tn that
has the same behaviour as the call-by-name semantics of t. We can also translate simple
typings. The general idea of the translation is that we introduce thunk at all variable
bindings and force at every variable lookup. In an application t1 t2, the argument (t2) is
thunked, because it only evaluated if it is needed by the function. This idea also suggest
the following translation of PCF types to CBPV computation types:

Definition 2.10 (Translation of CBN types and contexts).

Natn := FNat

(A→ B)n := UAn → Bn

Call-by-push-value 19

Contexts are translated pointwisely, i.e. ∅n = ∅ and (x : A,Γ)n := x : An,Γn.

For example, the type Nat → Nat is translated to (UFNat) → FNat. This means,
the CBPV function expects as argument a thunked computation that, when forced, will
eventually return a constant (or diverge).

Definition 2.11 (Translation of dℓPCFn terms).

xn := forcex

kn := return k

(λx. t)n := λx. tn

(µx. t)n := µx. tn

(ifz t1 then t2 else t3)
n := bindx← tn1 in ifzx then t

n
2 else t

n
3

(t1 t2)
n := tn1(thunk tn2)

(Succ(t))n := bindx← tn in calc y ← Succ(x) in return y

(Pred(t))n := bindx← tn in calc y ← Pred(x) in return y

Lemma 2.12 (Call-by-name typing translation). Every PCF typing Γ ⊢ t : A can be
translated to a CBPV typing Γn ⊢ tn : An.

Proof. By induction on the PCF typing. We will see a more detailed proof in Section 7.3.

We will later need to convert CBN (closure) executions to CBPV executions, and vice
versa.3 Therefore, we also define closure semantics for CBPV and show that the number
of variable lookups in a CBN execution corresponds to the number of forcing steps in
the corresponding CBPV closure execution. We omit the translation from ordinary CBPV
big-step executions to CBPV closure executions.

Closures and environments are defined similarly as in Definition 2.6. As there are
two syntactic categories of CBPV terms (values and computations), there are also two
categories of closures.

Definition 2.13 (CBPV closures and environments). An environment ξ is a partial map-
ping from term variables to value closures. A computation closure c = ⟨t; ξ⟩ is a tuple of
a CBPV computation terms and an environment. A value closure vc = ⟨v; ξ⟩ is a tuple of
which the term is a CBPV value term. A (computation or value) closure is closed, if all
free variables occurring in the (value or computation) term are bound in ξ, and all the
respective value closures in ξ are also closed. A terminal closure is a computation closure
where the computation term is terminal (i.e. either return v or λx. t).

c ::= ⟨t; ξ⟩ tc ::= ⟨return v; ξ⟩
∣∣ ⟨λx. t; ξ⟩ vc ::= ⟨v; ξ⟩ ξ ::= ∅

∣∣ x 7→ vc, ξ

3It was first shown in [27] that the translation function ·n preserves operational semantics. However, it is
not shown there that the number of variable lookups (i.e. in the CBN environment semantics) corresponds
to the number of forces.

20 Programming languages preliminaries

tc ⇓0 tc

⟨t1; ξ⟩ ⇓i1 ⟨return v; ξ′⟩ ⟨t2{v/x}; ξ′⟩ ⇓i2 tc

⟨bindx← t1 in t2; ξ⟩ ⇓i1+i2 tc

unroll ⟨v; ξ⟩ = ⟨n; ⟩
⟨t{1 + n/x}; ξ⟩ ⇓i tc

⟨calcx← Succ(v) in t; ξ⟩ ⇓i tc

unroll ⟨v; ξ⟩ = ⟨n; ⟩
⟨t{n .− 1/x}; ξ⟩ ⇓i tc

⟨calcx← Pred(v) in t; ξ⟩ ⇓i tc

⟨t;x 7→ ⟨thunkµx. t; ξ⟩ , ξ⟩ ⇓i tc
⟨µx. t; ξ⟩ ⇓i tc

⟨t; ξ⟩ ⇓i1 ⟨λx. t′; ξ′⟩
⟨t′;x 7→ ⟨v; ξ⟩ , ξ′⟩ ⇓i2 tc

⟨t v; ξ⟩ ⇓i1+i2 tc

unroll ⟨v; ξ⟩ = ⟨0; ⟩ ⟨t2; ξ⟩ ⇓i tc
⟨ifz v then t2 else t3; ξ⟩ ⇓i tc

unroll ⟨v; ξ⟩ = ⟨1 + n; ⟩ ⟨t3; ξ⟩ ⇓i tc
⟨ifz v then t2 else t3; ξ⟩ ⇓i tc

unroll ⟨v; ξ⟩ = ⟨thunk t; ξ′⟩ ⟨t; ξ′⟩ ⇓i tc
⟨force v; ξ⟩ ⇓1+i tc

Figure 2.6: Environment semantics of CBPV

We define the big-step environment semantics · ⇓i · in Figure 2.6. Closed computation
closures are partially mapped to a terminal closure; i is the number of forces during the
execution.

Note that there is no variable lookup rule as in call-by-value PCF since variables are
already considered values in CBPV. This is actually a complication for the environment
semantics, since operators like Succ require the value v to be in a certain shape, (i.e. k for
Succ and thunk t for force), but v could be a variable that is bound in the environment.
Because of this, we need to unfold value closures until this head symbol is known:

Definition 2.14 (unroll(vc)). We define the function unroll(vc) on value closures by
structural induction:

unroll ⟨n; ξ⟩ := ⟨n; ξ⟩
unroll ⟨thunk t; ξ⟩ := ⟨thunk t; ξ⟩

unroll ⟨x; ξ⟩ := unroll(ξ(x))

Another complication of the environment semantics are the binders introduced by bind
and calc. Because there are no corresponding binders in the CBN closure semantics, we
choose to substitute the binders instead of adding the result of t1 to the environment. This
is very important in the proof of bisimulation of CBN closures and their CBPV translations.

We can show that there is a bisimulation between executions of closures c and their
CBN translations ·n. First, we define how to translate CBN closures to CBPV closures.

Call-by-push-value 21

Definition 2.15 (Translation of CBN closures).

⟨t; ξ⟩n := ⟨tn; ξn⟩
∅n := ∅

(x 7→ ⟨tx; ξx⟩ , ξ)n := x 7→ ⟨thunk tnx; ξnx⟩ , ξn

The definition of ξn can also be stated as: ξn(x) := ⟨thunk tnx; ξnx⟩ whenever ξ(x) = ⟨tx; ξx⟩.
The following lemma is one part of the bisimulation (the more complicated part).

Lemma 2.16 (Simulation of cn by c). Let cn = ⟨tn; ξn⟩ ⇓i tc be a CBPV execution. Then
there exists a CBN terminal closure tcCBN such that tc = tcnCBN and c ⇓i tcCBN.
Proof. By induction on the lexicographic order over i and the size of t. We make a case
analysis over t and inspect the executions of cn.

• Cases t = n or t = λx. t′ (i.e. the value cases). Then cn is already a terminal closure
(because the term of cn is either returnn or λx. t′n); thus cn = T and i = 0. This is
simulated by the empty computation ⟨t; ξn⟩ ⇓0 ⟨t; ξn⟩ in CBN.

• Case t = µx. t′. Then tn = µx. t′n, and the CBPV execution must be:〈
t′
n
;x 7→

〈
thunkµx. t′

n
; ξn

〉
, ξn

〉
⇓i tc〈

µx. t′
n
; ξn

〉
⇓i tc

The inductive hypothesis yields ⟨t′;x 7→ ⟨µx. t′; ξ⟩ , ξ⟩ ⇓i tcCBN, and thus ⟨µx. t′; ξ⟩ ⇓i
tcCBN.

• Case t = x; tn = forcex. Define ⟨cx; ξx⟩ := ξ(x). Then the CBPV execution has the
following shape:

unroll ⟨x; ξn⟩ = unroll(ξn(x)) = unroll ⟨thunk cnx; ξnx⟩ = ⟨thunk cnx; ξnx⟩
⟨cnx; ξnx⟩ ⇓i tc

⟨thunkx; ξn⟩ ⇓1+i tc

Now, the inductive hypothesis for ⇓i yields a tcCBN such that tc = tcnCBN and
⟨tx; ξx⟩ = ξ(x) ⇓i tcCBN. Thus, ⟨x; ξ⟩ ⇓1+i tcCBN.

• Case t = Succ(t′); tn = bindx ← t′n in calc y ← Succ(x) in return y. From inverting
the CBPV execution, we know:〈

t′
n
; ξn

〉
⇓i1

〈
return v; ξ′

〉
unroll

〈
v; ξ′

〉
= ⟨n; ⟩〈

calc y ← Succ(n) in return y; ξ′
〉
⇓i2 tc

By inverting the last execution, we get i2 = 0 and tc = ⟨1 + n; ξ′⟩.
The inductive hypothesis yields a tcCBN with tcnCBN = ⟨return v; ξ′⟩ and ⟨t′; ξ⟩ ⇓i1
tcCBN. Because tcCBN is a terminal closure (which implies that the term of tcCBN
is a terminal (CBN) term), we have tcCBN = ⟨n; ξ′′⟩ with ξ′′n = ξ′. Thus, we have
⟨Succ(t); ξ⟩ ⇓i1+i2 ⟨1 + n; ξ′⟩.

22 Programming languages preliminaries

• Case t = Pred(t′). As above.

• Case t = ifz t1 then t2 else t3; tn = bindx ← tn1 in ifzx then t
n
2 else t

n
3. Like above, we

invert the CBPV execution:

⟨tn1; ξn⟩ ⇓i1
〈
return v; ξ′

〉
unroll

〈
v; ξ′

〉
= ⟨n; ⟩

〈
ifzn then tn2 else t

n
3; ξ′

〉
⇓i2 tc

The inductive hypothesis on ⇓i1 (like above) yields a ξ′′ with ξ′′n = ξ′ and ⟨t1; ξ⟩ ⇓i1
⟨n; ξ′′⟩.
We make a case distinction over n.

– Case n = 0. Then (since unroll ⟨n; ξ′⟩ = ⟨n; ⟩), ⟨tn2; ξ′ = ξ′′n⟩ ⇓i2 tc. The
inductive hypothesis on this execution yields a tcCBN such that ⟨t2; ξ′′⟩ ⇓i2
tcCBN. This means that:

⟨ifz t1 then t2 else t3; ξ⟩ ⇓i1+i2 tcCBN

– Case n > 0: analogously.

The other part of the bisimulation is the following lemma:

Lemma 2.17 (Simulation of c by cn). Let c ⇓i tcCBN. Then cn ⇓i tcnCBN.

Proof. By induction on c ⇓i tcCBN.

We can also show that the CBPV closure semantics is a refinement of the operational
semantics. For this, we define the closure unrolling functions:

Definition 2.18 (unf (vc) and unf (c)). We define the functions unf (vc) and unf (c) on
closed value/computation closures, that return values or computations, respectively, by
structural induction:

unf ⟨n; ξ⟩ := n

unf ⟨thunk t; ξ⟩ := thunk unf ⟨t; ξ⟩
unf ⟨x; ξ⟩ := unf (ξ(x))

unf ⟨force v; ξ⟩ := force unf ⟨v; ξ⟩
unf ⟨return v; ξ⟩ := return unf ⟨v; ξ⟩

unf ⟨λx. t; ξ⟩ := λx. unf ⟨t; ξ⟩

The remaining defining equations for unf (c) are similar. Note that unf (tc) returns a
closed terminal computation for closed terminal closures.

Lemma 2.19 (CBPV closure and normal semantics). Let t be a closed CBPV computation.
Then the following propositions are equivalent:

• t ⇓i T

• ⟨t; ∅⟩ ⇓i tc with T = unf (vc).

Call-by-push-value 23

2.3.4 Call-by-value translation

We now show how to translate CBV terms and typings to CBPV terms and typings.
First, we translate CBV types to CBPV value types:

Definition 2.20 (Call-by-value type translation).

Natv := Nat

(A→ B)v := U (Av → FBv)

(x : A,Γ)v := x : Av,Γv

To translate terms t, we have to do a case distinction whether t is a value. (Remember
that values are a subcategory of PCF terms.) Values v are translated to CBPV values vval,
and all terms t can be translated to CBPV computation terms tv. In particular, a value v
will be translated to a returner – vv = return vval.

Definition 2.21 (Translation of dℓPCFn terms).

kval := k

(λx. t)val := thunkλx. tv

(µfx. t)val := thunkµf. λx. tv

vv := return vval

xv := returnx

(ifz t1 then t2 else t3)
v := bindx← tv1 in ifzx then t

v
2 else t

v
3

(t1 t2)
v := bindx← tv1, y ← tv2 in (forcex) y

(Succ(t))v := bindx← tv in calc y ← Succ(x) in return y

(Pred(t))v := bindx← tv in calc y ← Pred(x) in return y

To translate CBV typings, we again have two cases:

Lemma 2.22 (Call-by-value typing translation). • Every PCF typing Γ ⊢ v : A, where
v is a value, can be translated into a CBPV value typing Γv ⊢v vval : Av.

• Every PCF typing Γ ⊢ t : A can be translated into a dℓPCFpv computation typing
Γv ⊢c tv : FAv.

Proof. By mutual induction on the PCF typings. We will see a more detailed proof in
Section 7.4.

The bisimulation between t and tv is easier than in the call-by-name case, because we
can use the normal big-step semantics (using small-step semantics is also possible). We
first show that tv is simulated by t.

Lemma 2.23 (Call-by-value simulation (big step)). Let tv ⇓i T (where t is a closed CBV
term and T denotes a terminal CBPV computation). Then there exists a CBV value v with
vv = T and t ⇓i v. (Note that vv = return vval.)

24 Programming languages preliminaries

Proof. By induction on i and t, as in the proof of Lemma 2.16.

• Case t = v; tv = return vval. Then T = tv and i = 0; also v ⇓0 v.

• Case t = t1 t2; t
v = bindx ← tv1, y ← tv2 in (forcex) y. We partially invert the CBPV

execution:

tv1 ⇓i1 returnu1

tv2 ⇓i2 returnu2

forceu1 ⇓i3 λz. t′ t′{u2/z} ⇓i4 T

(forceu1)u2 ⇓i3+i4 T

bind y ← t2 in (forceu1) y ⇓i2+i3+i4 T

bindx← tv1, y ← tv2 in (forcex) y ⇓i1+i2+i3+i4 T

The first inductive hypothesis yields a v1 such that vv1 = return vval = returnu1 (and
thus vval1 = u1) and t1 ⇓i1 v1. The second inductive hypotheses yields a v2 such that
vval2 = u2 and t2 ⇓i2 v2.

Now we make a case distinction over v1.

– Case v1 = n. This case is not possible, since forceu1 = forcen is stuck.

– Case v1 = λz. t′′; u1 = vval1 = thunkλz. t′′v. Hence, t′ = t′′v and i3 = 1. Thus,
the last part of the CBPV execution is:

t′{u2/z} = t′′
v{vval2 /z} = (t′′{v2/z})v ⇓i4 T

On this we can apply the inductive hypothesis once more and get a v3 such that
T = vv3 = return vval3 and t′′{v2/z} ⇓i4 v3. Thus, we have t1 t2 ⇓1+i1+i2+i4 v3.

– Case v1 = µfz. t′′; u1 = vval1 = thunkµf. λz. t′′val. The computation forceu1
terminates after one (i3 = 1) step into:

λz. t′ = λz. t′′
val{thunkµf. λz. t′′/f}

The last part of the computation has the shape:

t′{u2/z} = t′′
v{vval2 /z, thunkµf. λz. t′′/f} = (t′′{v2/z, µfx. t′′})v ⇓i4 T

On this we can apply the inductive hypothesis once more and get a v3 such that
T = vv3 = return vval3 and t′′{v2/z, µfx. t′′} ⇓i4 v3. Thus, we have t1 t2 ⇓1+i1+i2+i4

v3.

• Case t = Succ(t′); tv = bindx ← t′v in calc y ← Succ(x) in return y. Then t′v ⇓i
returnn and T = return 1 + n. The inductive hypothesis yields t′ ⇓i n, and thus
Succ(t′) ⇓i 1 + n.

• Case t = Pred(t′). As above.

• Case t = ifz t1 then t2 else t3, and thus tv = bindx ← tv1 in ifzx then t
v
2 else t

v
3. We have

tv1 ⇓i1 returnu and ifzu then tv2 else t
v
3 ⇓i2 T . For the second part of the execution,

there are two cases:

Call-by-push-value 25

– u = 0. Then tv2 ⇓i2 T .

– u = 1 + n. Then tv3 ⇓i2 T .

In both cases, using the two inductive hypotheses, we have ifz t1 then t2 else t3 ⇓i1+i2 v
for a v with vv = T .

Note that the cases Succ, Pred and ifz are similar to the corresponding cases in the
proof of Lemma 2.16, since these terms are translated in the same way.

Again, the second part of the bisimulation is easier:

Lemma 2.24 (Simulation of t by tv). Let t ⇓i v. Then tv ⇓i vv = return vval.

Proof. By induction on t ⇓i v.

Part I

Coeffect systems

Chapter 3

Introduction

In this part of the thesis, we discuss a coeffect-based approach to complexity analysis
with refinement type systems. In general, coeffect systems are about how the environment
affects the program. Compare this to the dual notation, effects, which consider how the
program affects the environment. There are many possible applications of coeffects. For
example, it is discussed in [32] how coeffects can be used to track implicit variables, bound
variable reuse, and analyse liveness of variables. Since we are interested in analysing
the complexity of programs, we want to analyse how a program uses certain abstract
non-duplicateable resources. Ultimately, the number of resources that are (potentially)
consumed can be seen as an upper bound on the dynamic cost of a program (i.e. the
cost of its execution). However, what exactly constitutes a resource varies from system to
system.

dℓPCF is a family of conceptually similar coeffect-based refinement type systems. There
are different variants – each of them is sound and relatively complete – but they target
different execution strategies. dℓPCFn [11] is the original version, which targets the call-by-
name version of PCF (without pairs), and dℓPCFv [12] targets the call-by-value strategy.
To understand why there are different versions for different evaluation strategies, and
to understand the underlying ideas of dℓPCF better, it is helpful to understand bounded
linear logic BLL [19] – a logical calculus. The variants of dℓPCF are inspired by different
computational interpretations of proofs in (variants of) BLL. The correspondence between
proofs and programs in general is known as the Curry-Howard isomorphism.

3.1 A brief primer on BLL

Here we give a short summary of intuitionistic linear logic (ILL) and bounded linear logic
(BLL) following [19]. Readers that are familiar with BLL can skip this section.

The reader should first recall intuitionistic logic (IL). A proof of a sequent in IL is
a derivation from the (standard) rules in Figure 3.1. Here, A and B denote formulae,
which are built from atomic formulae (α), logical conjunction (∧), and implication (→).
Contexts (Γ or ∆) are multisets of formulae.1 The meaning of a sequent is that the

1A multiset is a set where every member has a count, but the order does not matter. For example, the

A brief primer on BLL 29

Axiom

A ⊢ A

Contraction
A,A,Γ ⊢ C

A,Γ ⊢ C

Weakening
Γ ⊢ C

A,Γ ⊢ C

∧R
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B

∧L
A,B,Γ ⊢ C

A ∧B,Γ ⊢ C

→R
A,Γ ⊢ B

Γ ⊢ A→ B

→L
Γ ⊢ A B,Γ ⊢ C

A→ B,Γ ⊢ C

Cut
Γ ⊢ A A,Γ ⊢ B

Γ ⊢ B

Figure 3.1: Rules of intuitionistic logic (IL)

Axiom

A ⊢ A

Contraction
!A, !A,Γ ⊢ C

!A,Γ ⊢ C

Weakening
Γ ⊢ C

!A,Γ ⊢ C

Dereliction
A,Γ ⊢ B

!A,Γ ⊢ B

⊗R
∆1 ⊢ A ∆2 ⊢ B

∆1,∆2 ⊢ A⊗B

⊗L
A,B,Γ ⊢ C

A⊗B,Γ ⊢ C

⊸R
A,Γ ⊢ B

Γ ⊢ A ⊸ B

⊸L
∆1 ⊢ A B,∆2 ⊢ C

A ⊸ B,∆1,∆2 ⊢ C

Cut
∆1 ⊢ A A,∆2 ⊢ B

∆1,∆2 ⊢ B

Promotion
!Γ ⊢ B

!Γ ⊢!B

Figure 3.2: Rules of intuitionistic linear logic (ILL)

truth of the formula C follows from truth of the formulae in Γ. In intuitionistic logic,
there are no restrictions on how often an assumption may be used. For example, in the
sequent A,A → B ⊢ A ∧ B, the assumption A is used twice and A → B is used once.
The contraction and weakening rules allow duplication and discarding of assumptions,
respectively. If we want to show a conjunction of two formulae A ∧B, we simply have to
prove both of them with the same assumptions. Dually, if we have A∧B as an assumption,
we can split it into two assumptions. To show an implication A→ B, we have to show B
with A as an additional assumption. The dual rule allows us to use an assumed implication.

The cut rule allows us to reuse a proof: If we have already shown A, we can add it as
an assumption when we prove another formula B. Every proof can be converted into a
proof that does not use the cut rule by a process called cut elimination; a proof is said to
be in normal form if it does not use the cut rule.

Formulae of intuitionistic linear logic (ILL, see Figure 3.2 for the standard rules) are
built using the following grammar:

A,B ::= α
∣∣A⊗B

∣∣A ⊸ B
∣∣ !A

equality {A,B,A} = {B,A,A} holds, but {A,A} ̸= {A}. A,Γ denotes the multiset where A appears one
time more often than in Γ. ∆1,∆2 denotes multiset union.

30 Introduction

⊢ I2 ⊑ I1 ⊢ A ⊑ B

⊢ !a<I1A ⊑ !a<I2B

⊢ A2 ⊑ A1 ⊢ B1 ⊑ B2

⊢ A1 ⊸ B1 ⊑ A2 ⊸ B2

⊢ A1 ⊑ A2 ⊢ B1 ⊑ B2

⊢ A1 ⊗B1 ⊑ A2 ⊗B2

Axiom
⊢ A ⊑ A′

A ⊢ A′

Contraction
!a<I1A, !a<I2A{a + I1/a},Γ ⊢ C

!a<I1+I2+I3A,Γ ⊢ C

Weakening
Γ ⊢ C

!a<IA,Γ ⊢ C

Dereliction
A{0/a},Γ ⊢ B

!a<1+IA,Γ ⊢ B

⊗R
∆1 ⊢ A ∆2 ⊢ B

∆1,∆2 ⊢ A⊗B

⊗L
A,B,Γ ⊢ C

A⊗B,Γ ⊢ C

⊸R
A,Γ ⊢ B

Γ ⊢ A ⊸ B

⊸L
∆1 ⊢ A B,∆2 ⊢ C

A ⊸ B,∆1,∆2 ⊢ C

Cut
∆1 ⊢ A A,∆2 ⊢ B

∆1,∆2 ⊢ B

Promotion
∆ ⊢ B ⊢ Γ ⊑∑

a<I ∆

Γ ⊢ !a<IB

where in Promotion: ∆ = !c<J1A1{c+
∑

d<a J1{d/a}/b}, . . . , !c<JnAn{c+
∑

d<a Jn{d/a}/b}

and
∑

a<I ∆ := !c<(
∑

a<I J1)
A1, . . . , !c<(

∑
a<I Jn)An

Figure 3.3: Rules of bounded linear logic (BLL)

ILL is a refinement of intuitionistic logic, where assumptions are seen as resources. These
resources are normally neither duplicateable nor disposable, unless they are marked with
‘!’. Thus, in the contraction and weakening rules of ILL, we may only duplicate or forget
banged assumptions. In other words, banged resources may be (re)used arbitrarily often.
To prove a multiplicative conjunction A⊗B, we also have to show A and B; however, we
have to distribute the resources among the proofs of A and B.2 For linear implications
A ⊸ B, we add A to the multiset of assumptions. This implies that we have to use A
exactly once, unless A is itself a banged formula. For example, we can show A→ B,A→
C ⊢ !A → B ⊗ C. The promotion rule makes a formula !B arbitrarily often reusable.
For this, the assumptions of B also have to be banged (Γ! stands for a context of banged
formulae). For example, we can show !A, !(A ⊸ B), C ⊢ !B ⊗ C:

...

A, (A ⊸ B) ⊢ B
(2×dereliction)

!A, !(A ⊸ B) ⊢ B

!A, !(A ⊸ B) ⊢ !B C ⊢ C

!A, !(A ⊸ B), C ⊢ !B ⊗ C

2This is why ⊗ is called multiplicative conjunction. There also is an additive conjunction (&), which
we will discuss later.

From BLL to dℓPCF 31

The substructural control that we gain with bangs in ILL is coarse: We can only specify
whether a resource may be used exactly once or arbitrarily often. Accordingly, bounded
linear logic (BLL, see Figure 3.3) is a refinement of ILL that increases the expressive power.
It has three main changes to ILL:

• There is a language of index terms (called resource polynomials in [19]).3 Atomic
formulae α(I1, . . . , In) may depend on a list index terms. Otherwise, the grammar
of formulae is the same as in ILL.4

• The logic is affine, which means that resources may always be thrown away. In
particular, if ⊢ A ⊑ A′ (which roughly says that A′ is weaker than A), we can
convert a proof of Γ ⊢ A into a proof of Γ ⊢ A′.

• Banged formulae (!A) are refined to !a<IA, where I is an index term and a is an
index variable that may occur free in the formula A. Such a formula may be used
at most I times, each time with a different value for a. Thus, the formula !a<IA is
morally equivalent to A{0/a} ⊗ · · · ⊗A{I − 1/a}.

In the contraction rule, we may contract the banged formulae !a<I1A and !a<I2A{a +
I1/a}.5 This means that if the first formula is equivalent to A{0/a}⊗· · ·⊗A{I1−1/a} and
the second formula is equivalent to A{I1/a}⊗ · · · ⊗A{I1 + I2− 1/a}, then the contracted
formula, which we also write as (!a<I1A) ⊎ (!a<I2A{a + I1/a}) := !a<I1+I2A, is morally
equivalent to A{0/a}⊗ · · ·⊗A{I1 + I2− 1/a}.6 Finally, since BLL is affine, we may throw
away I3 more ‘instances’ of A.

The dereliction rule allows us to access the first ‘instance’ of a banged type, under the
assumption that the bound is positive. Similarly, the weakening rule allows us to throw
away a banged resource, regardless of the bound. In a linear (also called ‘precise’) version
of BLL, we may only throw away resources with bound 0.

The promotion rule is perhaps the most interesting rule, which allows duplicating a
resource B. As in ILL, the assumptions of B must also be duplicated. Note that the index
variable a may be free in ∆. Essentially, we prove B I-times, and we therefore have to
build a sum over the bounds. In particular, if the assumption Ai has the bound Ji in ∆,
then it will have the bound

∑
a<I Ji in the context

∑
a<I ∆, which is equivalent to:

∆{b/c, 0/a} ⊎∆{(b + J{0/a})/c, 1/a} ⊎ · · · ⊎∆{(b +
∑

a<I−1 J)/c, I − 1/a}

3.2 From BLL to dℓPCF

BLL is a logical calculus, but what does this has to do with dℓPCF, which is a family of type
systems? The Curry-Howard isomorphism relates proofs of intuitionistic logic to terms of

3In [19], the index terms must be polynomials. We remove this restriction here and assume an abstract
language of index terms. This is essential to attain (relative) completeness of the dℓPCF calculi.

4Actually, BLL also features quantification over formulae (∀α). We will consider this feature later.
5A{J/a} means that we substitute the index term J for the index variable a in A.
6The notation ⊎ was used in [11], and is called modal sum. Although modal sums are conceptually

similar to the multiplicative conjunctive (⊗), they should not be confused. The former is an operation on
banged formulae with the same shape, while the latter is a type constructor.

32 Introduction

the simply typed λ-calculus (i.e. PCF without fixpoints): A formula is provable if and only
if there is a term of the corresponding type. For example, λx. λy. ⟨x;x(y)⟩ has type (σ →
τ)→ (σ → σ × τ), which corresponds to a proof of the formula (α→ β)→ (α→ α ∧ β).
The cut rule corresponds to the substitution lemma (see e.g. Lemma 2.3 for System T):
If we can type x : σ,Γ ⊢ t1 : τ and Γ ⊢ t2 : σ, then we can type Γ ⊢ t1{t2/x} : τ .7

Now, there are two possible interpretations to translate formulae of IL to formulae of
ILL [1]: In an intuitionistic proof of the implication A → B, it could be the case that
the premise is not used at all, or perhaps it is used more than once. This idea leads to
the first translation – known as the call-by-name interpretation: A → B is translated to
!A′ ⊸ B′, where A′ and B′ are the translations of A and B. In the corresponding λ-term,
the argument is only evaluated when needed. Thus, we use call-by-name semantics.

The second interpretation is a call-by-value translation. Arrows A→ B are translated
to !(A′ ⊸ B′), where A′ and B′ are again the translations of A and B. Here, the idea is
that the corresponding λ-term expects a ‘proof’ of A in normal form, i.e. the arguments
to the function are values, following the call-by-value evaluation strategy.

We now want to introduce affine type systems where the types correspond to formulae
of BLL. To this end, we will sketch out two variants of the types systems, one for the
call-by-name and one for the call-by-value interpretation. In the first type system, types
have the following grammar:

σ, τ ::= b(I1, . . . , In)
∣∣ ([a < I] · σ) ⊸ τ

Here, b stands for refined base types, e.g. Nat[I]. [a < I] corresponds to !a<I in BLL. Note
that we only have quantifiers at negative positions. For example, the type ([a < I] ·σ) ⊸ τ
means that the argument may be evaluated at most I times, where I is an index term.

The call-by-value type system has the following syntax of types:

σ, τ ::= b(I1, . . . , In)
∣∣ [a < I] · (σ ⊸ τ)

We may apply functions of type [a < I] · (σ ⊸ τ) I-times – each time possibly with
different arguments and results.

The type systems that we have just sketched lead to dℓPCFn and dℓPCFv, which target
the call-by-name and call-by-value version of PCF, respectively. The austere reader will
wonder whether these type systems are sound, since PCF features unbounded recursion:
The simple typing x : τ ⊢ µx. x : τ is clearly unsound from the logical perspective. In our
versions of dℓPCF, it is in fact possible to type diverging terms.8 Soundness of our systems,
however, ensures that typings of diverging terms also have diverging index terms. On the
other hand, (relative) completeness implies that terminating programs can be typed with
terminating index terms as annotations.

In Section 2.3, we recapitulated a variant of PCF called call-by-push value (CBPV).
One of the main contribution in this part of the thesis is that we define a type system
called dℓPCFpv that targets CBPV and subsumes dℓPCFv and dℓPCFn.

7This holds for a suitable definition of substitution. For simplicity, however, we always assume that the
terms that are substituted for values are closed.

8This is not possible in the versions of dℓPCF in [11, 12].

Costs and weights 33

3.3 Costs and weights

The last question that we should address before we can continue is: How can we analyse
the complexity of programs using the type systems inspired by BLL? The answer is quite
simple: If we sum up the indexes at the promotion rule, we get an upper bound on how
many resources can be consumed in the proof of a closed formula. If the initial context
is empty, we can only use those resources that are allocated and maybe pushed to the
context afterwards. This sum, which is an index term, is called the weight of a proof.

Accordingly, in the variants of dℓPCF, the weight of a typing is a (static) upper bound
on the (dynamic) execution cost of the corresponding program. In Section 2.2, we have
defined, not without coincidence, that the cost of an CBN execution is the number of vari-
able lookups – each variable lookup corresponds to the use of one resource. Furthermore,
the cost of a CBV execution is the number of β-substitutions – each application consumes
one resource. In dℓPCFpv, the weight will be an upper bound on the number of times
thunked computation is forced during the execution.

3.4 Organisation of the remainder of this part

The first sound and relatively complete type system that we discuss in this part is dℓT in
Chapter 4, which targets System T. We also use this chapter to introduce basic concepts
that are also in common with dℓPCFv, like the concrete syntax of the types. Also all type
systems in this part feature a set of constraints over index terms (Lℓidx), which we will
introduce there. In Chapters 5 and 6, we will discuss dℓPCFv (call-by-value) and dℓPCFn
(call-by-name), which first appeared in [12] and [11], respectively. For the former, we will
give arguably simpler proofs of soundness and completeness, but we omit proofs for the
latter. Since both dℓT and dℓPCFv target languages with call-by-value semantics, we show
that dℓT can be embedded in dℓPCFv. In Chapter 7, we discuss a new type system called
dℓPCFpv, which subsumes both dℓPCFn and dℓPCFv. We prove that dℓPCFpv is sound and
(relatively) complete, and from this we derive the same results for dℓPCFv and dℓPCFn.
In the soundness and completeness proofs for dℓPCFpv, we use the same techniques as
in Chapter 5. In Chapter 8, we discuss an algorithm for creating composable dℓPCFpv
typings, and we add polymorphism to dℓPCFpv.

Chapter 4

Index terms (Lℓidx) and dℓT

In this chapter, we introduce a coeffect system called dℓT that targets System T. This
system is an extension of a system (with the same name) published in [3], but it can also
be seen as a stripped-down version of dℓPCFv [12] (which will be the subject of the next
chapter) with an additional rule for higher-order iteration. Thus, dℓT is not novel on
its own. Instead, we also use the present chapter to introduce the index term language
Lℓidx (which is used throughout the first part of this thesis) and the syntax and meaning of
dℓPCFv types and modal sums (which are the same in dℓT and dℓPCFv). We do not present
formal proofs here, as we will discuss more general proofs in Chapter 5 and Chapter 7.
Finally, we will type some first-order functions, and we will compare our version with the
version published in [3].

Although all variants of System T and PCF support product and sum types, we will
not consider these types here. Adding these types is straightforward, as we will show in
Section 7.7.

4.1 Types of dℓT (and dℓPCFv)

There are two syntactic categories of types in dℓT (and dℓPCFv), modal types and linear
types, which are defined by mutual induction. Modal types are the types that occur in
contexts, and they are also the types that terms are assigned to.

Types are annotated with index terms (e.g. I, J), which we will define in the next
section. For now, it suffices to know that index terms are expressions that (may) evaluate
to natural numbers, and index variables (e.g. a) may appear free in index terms.1

Modal types: σ, τ, ρ ::= Nat[I]
∣∣ [a < I] ·A

Linear types: A,B ::= σ ⊸ τ

Contexts: Γ,∆ ::= ∅
∣∣ x : τ,Γ

1The syntax of types also comes from [12]. However, this work also considers interval types, Nat[I1; I2],
which we do not consider in this thesis.

Index terms (Lℓidx) and constraints 35

Notationally, ⊸ binds stronger than [a < I], which means that we can write [a < I]·σ ⊸ τ
for [a < I] · (σ ⊸ τ). To avoid confusion, however, we will often use full parentheses, since
it is exactly the opposite in dℓPCFn. Furthermore, we write [< I] ·A if the index variable
does not appear in A.

Nat[I] stands for the type of constants n that are equivalent to the index term I.

As dℓT targets System T, which has call-by-value semantics, we bound how often
abstractions may be applied. The type [a < I] · (σ ⊸ τ) means that a term of this type
may be applied I times. Here, [a < I] also acts as a binder for the index variable a. This
means that the index variable a may occur free in the index terms of σ and τ . For example,
if we have a typing of a function with type [a < 2] · (Nat[a] ⊸ Nat[1 + a]), we can apply
this function twice: once each with an argument of type Nat[0] and Nat[1], respectively.

Note that in contrast to BLL, contexts are not multisets.2 This means that when we
write x : τ,Γ, we implicitly assume that x is not already in the domain of Γ. As usual, we
assume that contexts assign a type to every free variable. The types Γ(y) for variables y
that are not free in a term t are irrelevant, and can be removed from the context.

The types of dℓT and dℓPCFv can be seen as decorated PCF types. The erasure function
(| · |) removes these decorations and returns the PCF type with the same shape. Note that
we overload the function for modal and linear types.

Definition 4.1 (Type erasure). By mutual recursion on the modal and linear types, we
define: (|Nat[I] |) := Nat, (|[a < I] · A|) := (|A|), and (|σ ⊸ τ |) := (|σ|) → (|τ |). We call (|σ|)
the shape of σ.

4.2 Index terms (Lℓ
idx) and constraints

We now define the language Lℓidx of index terms for dℓT and the dℓPCF family. From the
above section, it should be clear that index terms serve two purposes:

• To bounds how often an (arrow) type may be used, and

• to refine the numerical values of the simple type Nat.

Lℓidx is a generalisation of a similar language in [11, 12]. As in these works, we will
later need to extend the language to show (relative) completeness. In particular, to handle
unbounded recursion for the systems in the dℓPCF family, we need to include a non-total
construct.

Index terms: I, J,K,L,M ::= ⊥
∣∣ n ∣∣ a ∣∣ I + J

∣∣ I .− J
∣∣ ∑

a<I J
∣∣ if C then J elseK

∣∣ · · ·
Constraints: C ::= I ⊑ J

∣∣ I ≡ J
∣∣ I < J

∣∣ I ≤ J
∣∣ I ≳ J

∣∣ I ↓
Constr. list: Φ := ∅

∣∣ C,Φ
2In terms of BLL, the contraction rule is applied implicitly in all multiplicative operations to ensure

that every variable only appears once in the typing context.

36 Index terms (Lℓidx) and dℓT

[[⊥]] = ⊥
[[n]] = n

[[I + J]] =

{
m + n [[I]] = m ∧ [[J]] = n

⊥ [[I]] = ⊥ ∨ [[J]] = ⊥

[[I .− J]] =

{
m .− n [[I]] = m ∧ [[J]] = n

⊥ [[I]] = ⊥ ∨ [[J]] = ⊥

[[
∑

a<I J]] =

0 [[I]] = 0

[[J{0/a}+
∑

a<I .−1 J{a + 1/a}]] [[I]] > 0

⊥ [[I]] = ⊥

[[if C then I else J]] =

{
[[I]] ⊨ C

[[J]] ⊭ C

∃n : Nat. [[I]] = n

⊨ I ↓
∀n : Nat. [[J]] = n⇒ [[I]] = n

⊨ I ⊑ J

⊨ I ⊑ J ⊨ J ⊑ I

⊨ I ≡ J

∃m : Nat. [[I]] = m ∧
∀n : Nat. [[J]] = n⇒ m < n

⊨ I < J

⊨ I < J or ⊨ I ⊑ J

⊨ I ≤ J

∀n : Nat. [[J]] = n⇒
∃m : Nat. [[I]] = m ∧m ≥ n

⊨ I ≳ J

Figure 4.1: Semantics of closed Lℓidx terms and constraints

Here, n stands for a constant, and a, b, c are index variables (from a list ϕ of index vari-
ables). Index variable substitution is defined in the standard way. For example, I{a+J/a}
is the index term where all occurrences of a are replaced with a + J .3

The main addition to the language in [11, 12] is that we add support for undefined
index terms (⊥). This will allows us to embed the simple type systems inside dℓT and
the variants of dℓPCF. In particular, we will also be able to type diverging programs.
However, our soundness theorems ensure that if the index terms that occur in a refinement
terminate, so do the typed terms. (This is not relevant for dℓT, since all simply typed
System T programs terminate.)

The semantics of the language of index terms and constraints is given in Figure 4.1.
For closed index terms I, we write [[I]] = k if the index term I is defined and has value k.
We write [[I]] = ⊥ if the index term I is undefined.4

The constraints ⊑ and ≳ are only used to compare Nat-refinements. Thus, they trivi-

3Note that in contrast to term substitution, we often substitute non-closed index terms for variables.
4Since we will also allow recursive index terms later, formally, we need to define the relation [[I]] = k

inductively or using a term rewriting system. In the latter case, [[I]] = ⊥ means that one cannot reduce
[[I]] to a constant. Furthermore, we define m .− n as m− n if m ≥ n and 0 otherwise.

Index terms (Lℓidx) and constraints 37

ally hold if the right hand side is ⊥.5

The constraint I ↓ simply asserts that the index term I is defined.

We can prove the following facts about the semantics of the constraints:

Fact 4.2. • The relation ⊨ · < · is a partial order (antisymmetric and transitive),
where ⊥ is the largest element.

• The relations ⊨ · ≤ · and ⊨ · ⊑ · are preorders (reflexive and transitive).

• The relation ⊨ · ≡ · is an equivalence (reflexive, symmetric, transitive).

• For all closed index terms I and J , we either have ⊨ I < J or ⊨ J ≤ I.

We use the meta variable ϕ to denote lists of index variables. A valuation ν of ϕ is a
substitution that maps all index variables of ϕ to a constant (i.e. not ⊥). We write val(ϕ)
for the set of such valuations and define [[I]](ν) := [[Iν]] for non-closed index terms.

Finally, if C is a constraint that only has the variables in ϕ free, and Φ is a list of such
constraints, then ϕ; Φ ⊨ C is an assertion:

⊨ ∅
⊨ C ⊨ Φ

⊨ C,Φ

∀ν ∈ val(ϕ). ⊨ Φν ⇒ ⊨ Cν

ϕ; Φ ⊨ C

Note that if Φ is unsatisfiable (e.g. if it contains the constraints 1 < 0 or ⊥ < 1), then the
assertion holds vacuously.

Interpretations of undefined index terms The original versions of dℓPCF [11, 12]
do not support ‘undefined’ index terms. Thus, only terminating programs can be typed
in these systems, since they (implicitly) add constraints ϕ; Φ ⊨ I ↓ for all appearing index
terms and the respective Φ. In our generalisation of the systems, the index term ⊥ has
different meaning for bounds and Nat-refinements:

• As a bound, ⊥ can be intuitively thought as ‘infinite’. The sub-exponential [a < ⊥]
is equivalent to ! in linear logic. This means that the abstraction can be applied
arbitrarily often. Terms that have ⊥ as the annotation of a bound at a positive
position thus also have the weight ⊥. We will show that for a precise typing (which
we will define in Section 5.4) of a closed program, this means that the program
diverges, since all allocated resources must be used in such a program. In a non-
precise typing, we may always weaken a finite weight to ⊥.

• The type Nat[⊥] is equivalent to the simple type Nat. Thus, Nat[⊥] is inhabited by
all constants. We may subtype Nat[I] ⊑ Nat[⊥], but only in a non-precise typing.

5We only use 0 ≳ J in the case-distinction rule. There, the constraint should hold vacuously if [[J]] = ⊥.

38 Index terms (Lℓidx) and dℓT

4.3 Modal sums

Binary modal sum From Chapter 3, it should already be clear why we need modal
sums: Different parts of a program may need to share common variables. For example,
in an application t1 t2, both terms may need to use a function x from the context. The
term t1 may need the first I1 ‘instances’ of the type of x, and t2 may need the remaining
I2 instances. To type t1 t2, we need all I1 + I2 ‘instances’ of the type of x.

Note that the ‘order’ of these instances does not correspond to the order in which
they are consumed, but with the syntactic order. For example, in an application t1 t2, t1
may apply x I1-times before evaluating to a λ-abstraction, then t2 applies x I2-times, and
the body of the λ-abstraction applies x another I3-times. In this case, the type of x will
consist of the I1 + I3 instances by t1 and then the I2 instances by t2.

There are also some seemingly nonsensical modal sums. For example, in the following
typing, each application of the variable x yields a different result:

x : [a < 2] · (Nat[0] ⊸ Nat[a]) ⊢4 add (x 0) (x 0) : Nat[0 + 1]

Here, the type of x is split using the following modal sum: ([a < 1] · (Nat[0] ⊸ Nat[a])) ⊎
([a < 1] · (Nat[0] ⊸ Nat[a + 1])). The first/second application of x is typed with the
first/second type, respectively, and each of the types can be used at most once. Note that
such a type cannot be constructed by a closed program (because of the absence of side
effects), but we will not exclude this kind of modal type.

Variables of natural types like Nat[I] can always be shared among different parts of
a program. However, in the definition of binary modal sum Nat[I1] ⊎ Nat[I2], we assume
that I1 and I2 are equal.

Definition 4.3 (Binary modal sum). We define the ternary relation σ1 ⊎ σ2 = τ induct-
ively:

σ1 = Nat[I] σ2 = Nat[I]

σ1 ⊎ σ2 = σ1

σ1 = [a < I1] ·A σ2 = [a < I2] ·A{a + I1/a}
σ1 ⊎ σ2 = [a < I1 + I2] ·A

Note that we slightly abuse notation here, in a way that is common in mathematics.
For example, if mathematicians write 1 + limx→∞ f(x), they implicitly assume that this
limit is defined. Here, whenever we write σ1 ⊎ σ2, we implicitly assume that the types
fulfil the syntactic restrictions in the above definition. However, we will later show that if
the types have the same shape, then we can always construct equivalent types such that
the sum is defined (see Lemma 5.36).

Bounded modal sum There is another kind of sum, which we will need for the λ and
iteration rules. In these rules, variables may be reused along multiple uses of the same
function. The definition of sum of quantified types should be familiar from Chapter 3.

Typing rules 39

Definition 4.4 (Bounded modal sums). Let σ be a type that may have a free, and let I
an index term. We define the binary relation

∑
a<I σ = τ inductively:

σ = Nat[I] a not free in I∑
a<I

σ = Nat[I]

σ = [c < J] ·A{c +
∑
d<a

J{d/a}/b}∑
a<I

σ = [b <
∑
a<I

J] ·A

Note that in the second rule, A has b as one additional free variable (but a is not free).
In that rule, the substitution introduces two free variables (a and c). J and σ have a free,
but not b and c.

If σ = Nat[I], we again have a syntactic restriction, requiring that the index variable a
may not occur free in σ. The reason for this is the same reason for which Nat[I1]⊎Nat[I2]
is only defined if I1 = I2.

Bounded modal sums can be informally described using the following equation:∑
a<I

σ = σ{0/a} ⊎ · · · ⊎ σ{I − 1/a}

For example, consider the following modal type:

σ = [b < a] · (Nat
[
b +

∑
d<I d

]
⊸ Nat

[
1 + b +

∑
d<I d

]
)

Then, the sum
∑

a<I σ = [b <
∑

a<I a] · (Nat[b] ⊸ Nat[1 + b]) can be understood as the
following (informal) modal sum:

([c < 0] · (Nat[0] ⊸ Nat[1]))

⊎ ([c < 1] · (Nat[c + 0] ⊸ Nat[1 + c + 0]))

⊎ ([c < 2] · (Nat[c + 0 + 1] ⊸ Nat[1 + c + 0 + 1]))

⊎ ([c < 3] · (Nat[c + 0 + 1 + 2] ⊸ Nat[1 + c + 0 + 1 + 2]))

⊎ · · ·
⊎ ([c < I − 1] · (Nat

[
c +

∑
d<I−1 d

]
⊸ Nat

[
1 + c +

∑
d<I−1 d

]
))

Modal sums are lifted to contexts pointwise, i.e. ∅ ⊎ ∅ = ∅, x : τ ⊎ ∅ = x : τ , and
(x : σ1,∆1) ⊎ (x : σ2,∆2) = x : (σ1 ⊎ σ2),∆1 ⊎∆2.

4.4 Typing rules

dℓT typing judgements (and also dℓPCFv typing judgements) have the shape ϕ; Φ; Γ ⊢K
t : τ . Here, ϕ is a list of index variables, and Φ a list of constraints over these variables, Γ
is the typing context of the typing, and K is the weight. All index terms in Φ, Γ, K, and
τ must be closed in ϕ.

40 Index terms (Lℓidx) and dℓT

ϕ; Φ ⊨ I ⊑ J

ϕ; Φ ⊢ Nat[I] ⊑ Nat[J]

ϕ; Φ ⊢ σ2 ⊑ σ1 ϕ; Φ ⊢ τ1 ⊑ τ2

ϕ; Φ ⊢ σ1 ⊸ τ1 ⊑ σ2 ⊸ τ2

ϕ; Φ ⊨ J ≤ I ϕ; a < J,Φ ⊢ A ⊑ B

ϕ; Φ ⊢ [a < I] ·A ⊑ [a < J] ·B

ϕ; Φ ⊢ σ ⊑ τ
ϕ; Φ ⊢ τ ⊑ σ

ϕ; Φ ⊢ σ ≡ τ

ϕ; Φ ⊢ A ⊑ B
ϕ; Φ ⊢ B ⊑ A

ϕ; Φ ⊢ A ≡ B

Sub
ϕ; Φ; Γ′ ⊢vK1

t : A1 ϕ; Φ ⊢ A1 ⊑ A2

ϕ; Φ ⊢ Γ ⊑ Γ′ ϕ; Φ ⊨ K1 ≤ K2

ϕ; Φ; Γ ⊢K2
t : A2

Var
ϕ; Φ;x : σ,Γ ⊢0 x : σ

Const
ϕ; Φ; ∅ ⊢0 n : Nat[n]

Succ
ϕ; Φ; Γ ⊢M t : Nat[J]

ϕ; Φ; Γ ⊢M Succ(t) : Nat[1 + J]

Pred
ϕ; Φ; Γ ⊢M t : Nat[J]

ϕ; Φ; Γ ⊢M Pred(t) : Nat[J .− 1]

Lam
a, ϕ; a < I,Φ;x : σ,∆ ⊢K t : τ

ϕ; Φ;
∑
a<I

∆ ⊢I+∑
a<I K λx. t : [a < I] · (σ ⊸ τ)

App
ϕ; Φ; ∆1 ⊢K1

t1 : [a < 1] · (σ ⊸ τ)
ϕ; Φ; ∆2 ⊢K2

t2 : σ{0/a}
ϕ; Φ; ∆1 ⊎∆2 ⊢K1+K2

t1 t2 : τ{0/a}

Ifz
ϕ; Φ; ∆1 ⊢K1

t1 : Nat[J]
ϕ; 0 ≳ J,Φ; ∆2 ⊢K2

t2 : τ
ϕ; 0 < J,Φ; ∆2 ⊢K2

t3 : τ

ϕ; Φ; ∆1 ⊎∆2 ⊢K1+K2
ifz t1 then t2 else t3 : τ

iter
a, b, ϕ; b < K, a < I,Φ; ∆1 ⊢M1

t1 : [c < 1] · (σ ⊸ σ{1 + a/a})
b, ϕ; b < K,Φ; ∆2 ⊢M2

t2 : σ{0/a, 0/c}
ϕ; Φ;

∑
b<K

((
∑
b<I

∆1{I .− 1 .− a/a}) ⊎∆2) ⊢M iter t1 t2 : [b < K] · (Nat[I] ⊸ σ{I/a, 0/c})

with M := K +
∑
b<K

(I + (
∑
a<I

M1) + M2)

Figure 4.2: Subtyping and typing rules of dℓT. All rules except iter are also rules of
dℓPCFv.

Typing rules 41

The index variables in ϕ can be thought of as universally quantified variables. Indeed,
the following equality can be shown:6

ϕ; Φ; Γ ⊢M t : τ ⇐⇒ ∀ν ∈ val(ϕ). ⊨ Φν ⇒ ∅; ∅; Γν ⊢Mν t : τν

In particular, if the constraint list Φ is unsatisfiable, we can convert any simple typing
into a dℓT typing with the same ‘shape’. This rule is called the explosion rule and it also
holds for the systems of the dℓPCF and df PCF families.

The typing and subtyping rules are depicted in Figure 4.2. We will explain them
one-by-one; the rules Const, Succ, and Pred are clear.

Subtyping ϕ; Φ ⊢ σ ⊑ τ means that τ is weaker than σ. For example, the type [a < I2]·A
is a subtype of [a < I1] ·A (relative to a constraint set Φ) if and only if the assertion
ϕ; Φ ⊨ I2 ≤ I1 holds.

Subsumption The subsumption rule always allows us to derive a weaker (or equivalent)
typing. For example, it lets us increase the weight, and it lets us replace types by
weaker types. We can also assign the undefined weight (⊥) to the new typing, since,
by definition, ϕ; Φ ⊨ K ′ ≤ ⊥. Similarly, we can weaken Nat[I] ⊑ Nat[⊥]. However,
both kinds of weakening are only allowed in non-precise typing. In a precise typing,
subsumption is only allowed with ≡.

Variable We can assign the type Γ(x) to variables x.

Lambda We want to build a typing for λx. t that can be used I times. This means that
we have to type t I-times, which is accomplished by adding a free index variable a
to ϕ and the constraint a < I to Φ. We build the sum over the contexts and over
the weights. Additionally, we add I to the weight, since it accounts for the cost of
the potential applications of this function.

Application We first type t1 with type [a < 1] · (σ ⊸ τ) (possibly after subtyping).
This allows us to use the function type once; speaking of function applications as
resources, we consume one of these resources. Because the cost for the application
rule has already been paid for in the lambda (or iteration) rule, we do not have to
increment the weight; the weight is just the sum of the weights of t1 and t2.

Case distinction We first type t1 with the type Nat[J]. This means that t1 will terminate
to a constant n such that ϕ; Φ ⊨ n ⊑ J . After this, we type t2 and t3 with the
final type τ , where we add the constraints 0 ≳ J and 0 < J , respectively. Using
these constraints, we add static information to the typing: The information on the
result of t1 can be used in the typings of t2 and t3. For example, we can type
a; ∅;x : Nat[a] ⊢0 ifz a then (ifz a then 0 else t) else (ifz a then t else 0) : Nat[0] for any
program t, since t will never be executed. Note that if J is a constant, then one of
the typings holds trivially (using the explosion rule).

6This is a corollary of the uniformisation lemma and index term substitution, which we will discuss in
the next chapter. The direction ‘⇐’ only holds if the language of index terms is sufficiently expressive.

42 Index terms (Lℓidx) and dℓT

In the special case J = ⊥, the constraints 0 ≳ ⊥ and 0 < ⊥ are tautological and can
thus be removed. Morally, this means that we do not gain any static information:
Since the result of t1 is unknown, we cannot express which of the two branches is
taken. Note that this is the only rule where ≳ is used, and we deliberately defined
its semantics such that the constraint ⊨ 0 ≳ ⊥ holds.

Moreover, note that in a precise typing, J can only be undefined if t1 diverges.
The typing rules in Figure 4.2, however, do not exploit this fact. We will discuss
admissible changes to the rules for precise typings in Section 5.4.

Iteration We want to make K applications of iter t1 t2, each of them (for b < K) gets a
value of type Nat[I] as argument. This means that t1 is executed

∑
c<K I times in

total, and t2 is executed K times. For each of the calls of t1 (for b < K and a < I),
we need to type t1 once. The term t2 only needs to be typed K-times; it is evaluated
once at the end of every application of iter t1 t2.

The type σ{0/c}, which has a and b as free index variables, describes a ‘chain’: For
b < K, σ{0/a, 0/c} is the type of t2, σ{1/a, 0/c} is the type of t1 t2, . . . , and finally,
σ{I/a, 0/c} is the result type of iter t1 t2 (with a value of type Nat[I] as argument).

The weight of the typings of t1 already accounts for the cost of the applications of
t1. We also add

∑
b<K I to the weight to account for the costs of the ‘iteration

unfolding’ steps (i.e. iter t1 t2 (1 + n) ≻1 t1 (iter t1 t2 n)). We build a similar sum over
the contexts. However, for technical reasons, the order of ∆1 is reversed.

Explicit or implicit subsumption All typing rules except the subsumption rule are
syntax directed. Therefore, care must be taken when inverting a typing. Instead of having
an explicit subsumption rule, we can also add subtyping judgements to the premises of
the typing rules. For example, the following is an invertible rule for λ-abstractions, with
subsumption ‘built in’:

a, ϕ; a < I,Φ;x : σ,∆ ⊢K t : τ
ϕ; Φ ⊢ Γ ⊑∑

a<I ∆ ϕ; Φ ⊨ I +
∑

a<I K ≤M ϕ; Φ ⊢ [a < I] · (σ ⊸ τ) ⊑ ρ

ϕ; Φ; Γ ⊢M λx. t : ρ

Having an explicit subsumption rule or not is a purely cosmetic design choice – the sub-
sumption rule will be admissible in any case. For comparison, the rules of dℓPCFn in
Chapter 6 are presented without an explicit subsumption rule.

4.5 Meta theory

The two key properties of dℓT are soundness and completeness.
It can be shown that every simply typed System T term terminates, but we do not

know in how many steps. If a System T program, that is a closed term t with the simple
type Nat, is also typed in dℓT with weight k, we can show that k is an upper bound on
the cost of the execution.

Meta theory 43

Theorem 4.5 (Soundness of dℓT for programs). Let t be a closed program (i.e. a System T
term with simple type Nat). Then we can show:

• Let ∅; ∅; ∅ ⊢ck t : Nat[I] be a dℓT typing. Then there is a k′ ≤ k and a constant n
such that t ⇓k′ n and ⊨ n ⊑ I. In particular, if ⊨ I ≡ m, then m = n.

• Let ∅; ∅; ∅ ⊢cK t : Nat[I] be a precise typing and t ⇓k n. Then ⊨ K ≡ k and ⊨ I ≡ n.

The key lemma of the soundness proof is subject reduction. This lemma states that if t
has dℓT type τ with weight K, and t ≻i t

′, then t′ also has type τ , but with weight K .− i.
The following lemma is one of interesting cases of subject reduction:

Lemma 4.6 (Subject reduction, case iter). If ϕ; Φ; ∅ ⊢M iter t1 t2 1 + n : ρ, then there
exists an index term M∗ such that ϕ; Φ ⊢M∗ t1 (iter t1 t2 n) : ρ and ϕ; Φ ⊨ 1 + M∗ ≤M .

Proof. We first invert the typing of the application and the constant:

ϕ; Φ; ∅ ⊢M ′ iter t1 t2 : [b < 1] · (Nat[1 + k] ⊸ ρ′)

ϕ; Φ; ∅ ⊢M3 1 + k : Nat[1 + k]

ϕ; Φ ⊢ ρ′{0/b} ⊑ ρ

ϕ; Φ ⊨ M ′ + M3 ≤M

Now we invert the typing of the iteration, and we get:

a, b, ϕ; b < 1, a < 1 + k,Φ; ∅ ⊢M1 t1 : [c < 1] · (σ ⊸ σ{1 + a/a}) (4.1)

b, ϕ; b < 1,Φ; ∅ ⊢M2 t2 : σ{0/a} (4.2)

ϕ; Φ ⊨ 1 +
∑
b<1

(1 + k +
∑

a<1+k

M1 + M2) ≤M ′

ϕ; Φ ⊢ σ{0/c, 1 + k/a} ⊑ ρ′

By weakening the constraint a < 1 + k to a < k, we get:

a, b, ϕ; b < 1; a < k,Φ; ∅ ⊢M1{k/a} t1 : [c < 1] · (σ ⊸ σ{1 + a/a})
Together with (4.2), we can then type:

ϕ; Φ; ∅ ⊢1+∑
b<1(k+

∑
a<k M1+M2) iter t1 t2 : [b < 1] · (Nat[k] ⊸ σ{0/c, k/a}) ϕ; Φ; ∅ ⊢M3 k : Nat[k]

ϕ; Φ; ∅ ⊢1+∑
b<1(1+(

∑
a<k M1)+M2)+M3

iter t1 t2 k : σ{k/a, 0/b, 0/c}

We can also substitute k for the index variable a and 0 for b in (4.1), and we get:

ϕ;���0 < 1,(((((
k < 1 + k,Φ; ∅ ⊢M1{k/a,0/b} t1 : [c < 1] · (σ{k/a, 0/b}⊸ σ{1 + k/a, 0/b})

From this, we remove the constraints 0 < 1 and k < 1 + k, since they are tautologies.
Finally, we apply the rule App:

ϕ; Φ; ∅ ⊢M∗:=1+
∑

b<1(k+(
∑

a<k M1)+M2)+M3+M1{k/b}

t1 (iter t1 t2 k) : σ{k + 1/a, 0/b, 0/c} ⊑ ρ′{0/b} ⊑ ρ

It is easy to show that ϕ; Φ ⊨ M∗ + 1 ≤M .

44 Index terms (Lℓidx) and dℓT

Relative completeness says that every program t that terminates in k steps to n can
be assigned the type Nat[n] and weight k.

Theorem 4.7 (Relative completeness of dℓT for programs). Let ∅ ⊢ t : Nat be a simply
typed System T term, and assume t ⇓k n. Then we can type ∅; ∅; ∅ ⊢k t : Nat[n].

In the proof of relative completeness, we build a typing, and thus have to show a set of
assertions. These assertions are all true, but we have to assume that the theory of index
terms is strong enough that we can prove these obligations inside this theory. We also
need to extend the index term language with a certain operator (findSlot). Thus, we say
that dℓT is relatively complete.

We omit the proofs of the theorems in this chapter. We will discuss more general
proofs in the next two chapters. In particular, dℓT can be embedded in dℓPCFv without
changing the weight.

4.6 Typing example

In this section, we give two example typings that build on top of each other. We first type
the addition function and then we use instances of that typing to type the multiplication
function. Recall that since in dℓT (and also in dℓPCFv) we have to know the arguments to
a function, we abstract over these arguments by introducing index variables. In particular,
we derive a typing for add that can be applied to any constant by simply instantiating
the index variables.

4.6.1 Addition

First, we will give a typing for add := λx. iter s x with s := λy.Succ(y). We will give a
typing that provides only one instance, i.e. a typing that allows one application to one
argument. This suffices for typing multiplication. However, this is in contrast to the
following example, where the typing that we construct is not general enough:

(λf. f (f 1 2) 3) add

We only need to abstract over the arguments by introducing index variables c and d. Thus,
the type that we want to assign to add is the following:

[b′ < 1] · (Nat[c] ⊸ [b < 1] · (Nat[d] ⊸ Nat[c + d]))

First, we type the iteration using the rule iter with the parameters σ := Nat[c + a],
K := 1, M1 := 1, M2 := 0, and I := d. This means, there will be one ‘instance’ of the
iteration, which consists of d loops.

a, b, c, d; b < 1, a < d;x : Nat[c] ⊢1 s : [< 1] · Nat[c + a] ⊸ Nat[c + a + 1]

b, c, d; b < 1;x : Nat[c] ⊢0 x : σ{0/a}
c, d; ∅;x : Nat[c] ⊢1+2d iter s x : [b < 1] · Nat[d] ⊸ Nat[c + d]

Related work 45

The final subtypings hold, since 1 +
∑

b<1(d + (
∑

b<d 1) + 0) = 1 + 2b and σ{d/a} =
Nat[c + d]. Now, we can type add using Lam. For this, we have to add the fresh index
variable b′ with the constraint b′ < 1 to the above typing of iter s x.

b′, c, d; b′ < 1; ∅ ⊢1+2d iter s x : [b < 1] · Nat[d] ⊸ Nat[c + d]

c, d; ∅; ∅ ⊢2+2d add : [b′ < 1] · Nat[c] ⊸ [b < 1] · Nat[d] ⊸ Nat[c + d]

The above weight already accounts for the cascaded application with two arguments.
Therefore, given two constants m and n, we can substitute m for c and n for d. Then
we can derive ⊢2+2n add mn by using the application rule twice. Therefore, 2 + 2n is an
upper bound on the cost of the application. Moreover, since the typing is precise, it can
also be shown that 2 + 2n is a tight bound. We will discuss precise typings in the next
chapter.

4.6.2 Multiplication

Recall the definition mult := λx. iter add x 0. Again, we introduce two new index variables
c and d. We have to type iter add x 0 in the context x : Nat[c]. As before, we choose
the parameters K := 1, I := d, and M2 := 0. Moreover, we choose σ := Nat[ac] and
M1 := ac. To type add x, we simply have to substitute ac for d in the above typing of add
and use App once.

a, b, c, d; b < 1, a < d;x : Nat[c] ⊢2+2ac add x : [< 1] · Nat[ac] ⊸ Nat[(a + 1)c]

b, c, d; b < 1;x : Nat[c] ⊢0 0 : σ{0/a}
c, d; ∅;x : Nat[c] ⊢1+3d+cd2−cd iter add x 0 : [b′ < 1] · Nat[d] ⊸ Nat[cd]

The weight can be justified using easy arithmetic:

1 +
∑
b<1

(d + (
∑
a<d

(2 + 2ac)) + 0) = 1 + d + 2d + 2c
∑
a<d

a = 1 + 3d + cd2 − cd

Finally, introducing the λ-abstraction over x increments the weight once more, and we
derive:

c, d; ∅; ∅ ⊢2+3d+cd2−cd mult : [b′ < 1] · Nat[c] ⊸ [b < 1] · Nat[d] ⊸ Nat[cd]

4.7 Related work

A system called dℓT was first introduced in [3]. However, the type system there is not
complete (w.r.t. System T), since it does not feature bounded exponentials ([a < I]), and
they also do not refine the type of natural numbers. Their variant of System T has similar
operational semantics as our variant. However, they also consider side effects (global
store), and their type systems tracks the set of locations that the program will read.

Our extension of dℓT is strongly inspired by dℓPCFv [12], which is the subject of the next
chapter. In fact, the only difference between dℓT and dℓPCFv is that we replace iteration

46 Index terms (Lℓidx) and dℓT

with unbounded recursion. We will show that the typing rule iter can be recovered as an
admissible typing rule in dℓPCFv by treating iteration as syntactic sugar.

Support for non-defined index terms is not present in [11, 12]. On its own, this is not
needed for dℓT (since all simply typed terms terminate). However, supporting diverging
PCF terms will come very handy in the type inference algorithm that we will discuss in
Chapter 8.

Chapter 5

Review of dℓPCFv

In this chapter we discuss dℓPCFv, an extension of dℓT from the above chapter targeting
the call-by-value variant of PCF.

The system dℓPCFv was first published in [12]. The main contribution of this chapter
is that we simplify the soundness and completeness proofs. We give the first spelled-out
account of completeness (some parts of it are in Appendix A). Also, most of these results
have been formally verified in Coq, see Appendix B. In [12], a stack machine is introduced,
which is an overhead in the proofs. We show that soundness and completeness can also
be shown using small-step operational semantics. Furthermore, we show that our version
of dℓT can be embedded in dℓPCFv. Using our refined semantics of index terms from
Section 4.2, we can also type diverging programs.

5.1 Forest Cardinality

The difference between dℓT from the previous chapter and dℓPCFv is that dℓPCFv features
unrestricted recursion. Since dℓPCFv is an affine type system, we can bound how often
the function variable f in the body of a fixpoint µfx. t can be applied. We count the
nodes of the recursion forest of the function in pre-order depth-first traversal order, and
we encode this forest using an index term I. Consider the bth node in this forest: There, f
can be (recursively) applied I times. Thus, I (with b as free variable) denotes the number
of children of the bth node in the recursion forest.

Forest cardinality is an operator on index terms that counts the size of the first K
trees of the forest described by an index term I. Of course, it is only defined if I actually
describes a finite forest. We extend our index term language Lℓidx with an operator △K

a I
that has the following semantics:

Definition 5.1 (Forest cardinality). Let K and I be index terms; b may occur free in I

48 Review of dℓPCFv

but not in K. We define the operator △K
a I with the following two equations:

[[
0
△
b
I]] = 0

[[
1+K
△
b

I]] = 1 + h + [[
K
△
b
I{h + b/b}]] if [[

I{0/b}
△
b

I{1 + b/b}]] = h

Note that forest cardinality is only partially defined. In particular, [[△1
b 1]] = ⊥.

The first equation means that the empty forest has size 0. In the second line, we want
to compute the cardinality of 1 + K trees. For this, we recursively compute the size of
children of the first tree, and then compute the size of the next K trees.1

We will make use of certain operations on forests, like splitting and merging. All of
these operations can of course be defined using the index term descriptions. For example,
in the following lemma, we state that we can split a forest into two forests:

Fact 5.2 (Forest Splitting). Let ϕ; Φ ⊨ H ≡ △K1+K2
b I be defined. Then there exist index

terms H1, H2, such that:

• ϕ; Φ ⊨ H1 ≡ △K1
b I,

• ϕ; Φ ⊨ H2 ≡ △K2
b I{H1 + b/b}, and

• ϕ; Φ ⊨ H ≡ H1 + H2.

Proof. If we see the index terms as ordinary numbers and functions of our meta theory,
this statement can be proved by induction on the value of K1.

Fact 5.3 ((Non)empty forest). Let ϕ; Φ ⊨ H ≡ △K
b I. If ϕ; Φ ⊨ 0 < K, then ϕ; Φ ⊨ 0 < H.

Furthermore, if ϕ; Φ ⊨ 0 ≡ H, then ϕ; Φ ⊨ 0 ≡ K.

The following lemma formalises the intuitive fact that the ath child of node number b
is in the same forest.

Fact 5.4. Let a < I and b < H := △K
b I. Then b+H ′ < H with H ′ := △a

c I{1 + b+ c/b}.

Proof. By induction on the definition of H, for an arbitrary b.

• Case K = 0. We have H = 0, which contradicts b < H.

• Case 1 + K. This means that H = 1 + H1 + H2 with H1 := △I{0/b}
b I{1 + b/b} and

H2 := △K
b I{1 + H1 + b/b}. (In other words, H1 is the cardinality of the children of

the first tree in the forest, and H2 is the cardinality of the remaining K trees in the
forest.) By the inductive hypotheses, we can assume that the property holds for H1

and H2. Case analysis on b:

1This definition differs slightly from the definition in [11, 12]. We only changed the order in which nodes
are counted, to make some inductive proofs over forest cardinality easier. Also, they have an additional
shifting parameter: △J,K

a I := △K
a I{a+ J/a}.

Typing Rules 49

– Case b = 0. This means, b is the very first node in the forest, and b + H ′

is the ath child node of this forest (with a < I{0/b}). We have to show:
0 + H ′ < H1 + H2. We can write I{0/b} = a + (I{0/a} − a). Therefore,
we can split the cardinality H1 using Fact 5.2: We have H1 = H ′ + H3 with

H3 := △I{0/b}−a
b I{1 +H ′+ b/b}. It remains to show H ′ < H ′+H2 +H3. This

holds, since 0 < H3 and I{0/b} − a > 0.

– Case 0 < b ≤ H1. This means that b is in one of the child tress in the first
forest. The goal follows from the first inductive hypothesis with K := I{0/b},
b := b− 1, I := I{1 + b/b}.

– Case 0 < b and H1 < b: b is not in the first tree. The goal follows from
the second inductive hypothesis with K := K, I := I{1 + H1 + b/b} and
b := b− 1−H1.

5.2 Typing Rules

The types of dℓPCFv are exactly the same as the types of dℓT. We also use the same
definitions of subtyping, binary and bounded modal sums, as well as subtyping. dℓPCFv
also has the typing rules as dℓT (depicted in Figure 4.2), except that the fixpoint rule
is substituted for the iteration rule. The fixpoint rule, which is depicted in Figure 5.1,
deserves an explanation. Recall that µfx. t is syntactic sugar for µf. λx. t.

The index term I (with b as free variable) describes the recursion forest for the K
main applications of the fixpoint.2 This means, the bth (self)application recursively calls
the function again I-times.

As an abbreviation, we introduce an index term H with the assertion ϕ; Φ ⊨ H ≡ △K
b .

Thus, H denotes the total size of the recursion forests (which consists of K trees). If we
want to enforce that all index terms are terminating (as in [12]), we would have to add the
assertion ϕ; Φ ⊨ H ↓ as a premise. Note that the function recursively calls itself H −K
times, and the fixpoint can (potentially) be called K times.

In the first hypothesis of the rule, we type the underlying abstraction λx. t for each of
the b < H applications. Here we may call f I-times, hence f : [a < I] · A is included in
the context (note that A may have a and b as free variables). Each of these applications
is always only used once (i.e. in the next recursive call or in the main application), so the
type of λx. t is [a < 1] ·B, for some type B.

The types A and B have the same PCF shape, but they may have different index
terms. A describes the type of f in the I child nodes, and B is the typing at the node
b. In the second line, we formalise an ‘invariant’ between the types A and B: The index
term 1 + b + (△a

c I{1 + b + c/b}) can be informally described as the node number of the
ath child of node number b. Using the first line, we have already shown that node number
b can be typed with B if all the children can be typed with A. In the second line, we
show that all children can also be typed with A, because B (for the ath child of b) is a
subtype of the corresponding A. Summarised, the first two hypotheses say that if all the

2The recursion forest can be infinite, but only finitely branching trees and forests can be encoded.

50 Review of dℓPCFv

Fix
b, ϕ; b < H,Φ; f : [a < I] ·A,∆ ⊢J λx. t : [a < 1] ·B

a, b, ϕ; a < I, b < H,Φ ⊢ B{0/a, 1 + b +

(
a
△
c
I{1 + b + c/b}

)
/b} ⊑ A

ϕ; Φ ⊨ H ≡
K
△
b
I I, J , and ∆ may have b free (but not a)

A and B may have a and b free the rest has neither a nor b free

Φ;
∑
b<H

∆ ⊢∑
b<H J µfx. t : [a < K] ·B{0/a,

a
△
b
I/b}

Figure 5.1: The fixpoint typing rule of dℓPCFv. All other rules are as in Figure 4.2. (The
rule iter is not present in dℓPCFv.)

leaf nodes can be typed with B, then – by induction on the forest – all K root nodes of
the forest can also be typed with B.

The final weight of the fixed point is just the sum of the weights of all typings. Finally,
we ‘export’ the typings B of the K roots of the forest.

Changes from [12] In contrast to the original presentation in [12], we do not add H
in the weight of the fixpoint. This is because we use slightly different semantics in which
the fixpoint application (µfx. t)v ≻1 t{µfx. t/f, v/x} takes only one step instead of two.
The cost of this step is already accounted for in the rule Lam, because (λx. t{µfx. t/f}) v
makes the same step.

5.3 Soundness

The following lemma (or admissible typing) rule is crucial in the meta theory of dℓPCFv.
It holds for all variants of dℓPCF (and corresponding lemmas also hold for df PCF in
Part II), and states that we can instantiate an index variable a with an index term I.
Note that I does not need to be closed itself; it could introduce additional free variables
(or re-introduce the variable a).

Lemma 5.5 (Index term substitution). Let a, ϕ1; Φ; Γ ⊢M t : τ be a typing and let
I be an index term closed in ϕ2. Then we can substitute I for a to derive a typing
ϕ1, ϕ2; Φ{I/a}; Γ{I/a} ⊢M{I/a} t : τ{I/a}. Moreover, this operation preserves the struc-
ture of the typing.

We show soundness of dℓPCFv using subject reduction on the small-step semantics.
Unlike in [12], we show that the weight of a typing reduces by one for every β-substitution
step. From this, we will conclude that the weight is an upper bound on the cost of an
execution of a closed program. This also entails that if the weight is a terminating index
term, the term also terminates.

Soundness 51

One of the key lemmas of the soundness proof are the splitting lemmas. The binary
splitting lemma says that a dℓPCFv typings of values can be split into two parts:

Lemma 5.6 (Binary splitting). Assume a typing ϕ; Φ; ∅ ⊢M v : ρ1 ⊎ ρ2. From this, we
can derive two typings ϕ; Φ; ∅ ⊢Mi v : ρi (for i = 1, 2) with ϕ; Φ ⊨ M1 + M2 ≤M .

There is also a ‘parametric’ version of this lemma for bounded modal sums:

Lemma 5.7 (Parametric splitting). Assume the typing ϕ; Φ; ∅ ⊢M v :
∑

c<J ρ, where the
index variable c /∈ ϕ may appear free in ρ. Then we can derive a typing c, ϕ; c < J,Φ; ∅ ⊢N
v : ρ with ϕ; Φ ⊨

∑
c<J N ≤M .

We will show similar lemmas in Chapter 7. Proofs of these lemmas are also outlined
in [12].

Key to subject reduction is substitution. It is a corollary of the splitting lemmas:

Lemma 5.8 (Substitution). Let ϕ; Φ;x : σx,Γ ⊢M1 t : ρ and ϕ; Φ; ∅ ⊢M2 v : σx, where v
is a closed value. Then ϕ; Φ; Γ ⊢M1+M2 t{v/x} : ρ.

Proof. By induction on the typing of t.

• Case t = n. Trivial, since the term is closed.

• Case t = y and hence ϕ; Φ ⊢ (x : σx,Γ)(y) ⊑ ρ. If x = y, then (x : σx,Γ)(y) =
σx ⊑ ρ and thus ϕ; Φ; Γ ⊢M2 v : ρ. Otherwise, (x : σx,Γ)(y) = Γ(y) ⊑ ρ, and thus
ϕ; Φ; Γ ⊢M1 y : ρ.

• Case t = t1 t2; we have:

ϕ; Φ; ∆1 ⊢K1 t1 : [a < 1] · (σ ⊸ τ) ϕ; Φ; ∆2 ⊢K2 t2 : σ{0/a}

ϕ; Φ ⊢ τ{0/a} ⊑ ρ ϕ; Φ ⊨ K1 + K2 ≤M1 ϕ; Φ ⊢ x : σx,Γ ⊑ ∆1 ⊎∆2

We split off the type of x in the contexts: ∆i = ∆i(x),∆′i (for i = 1, 2); and we have
∆1 ⊎∆2 = x : (∆1(x) ⊎∆2(x)),∆′1 ⊎∆′2. This means that, by subsumption, v can
be typed as ϕ; Φ; ∅ ⊢M2 v : ∆1(x) ⊎∆2(x). We split this typing (using Lemma 5.6),
and we obtain two typings of v:

ϕ; Φ; ∅ ⊢M21 v : ∆1(x) ϕ; Φ; ∅ ⊢M22 v : ∆2(x) ϕ; Φ ⊨ M21 + M22 ≤M2

Using inductive hypotheses on the typings of ti and the ith typing of v, we can type:

ϕ; Φ; ∆′
1 ⊢K1+M21

t1{v/x} : [a < 1] · (σ ⊸ τ) ϕ; Φ; ∆′
2 ⊢K2+M22

t2{v/x} : σ{0/a}
ϕ; Φ ⊢ Γ ⊑ ∆′

1 ⊎∆′
2 ϕ; Φ ⊨ (K1 + M21) + (K2 + M22) ≤M1 + M2

ϕ; Φ; Γ ⊢M1+M2
(t1 t2){v/x} : ρ

• Case λy. t, where x ̸= y; we have:

a, ϕ; a < I,Φ; y : σ,∆ ⊢K t : τ ϕ; Φ ⊢ x : σx,Γ ⊑
∑

a<I ∆

ϕ; Φ ⊨ I +
∑

a<I K ≤M1 ϕ; Φ ⊢ [a < I] · (σ ⊸ τ) ⊑ ρ

52 Review of dℓPCFv

Similar to above, we split ∆ into ∆(x),∆′, and using subsumption, we have:
ϕ; Φ; ∅ ⊢M2 v :

∑
a<I ∆(x). Using parametric splitting (Lemma 5.7), we get:

a, ϕ; a < I,Φ; ∅ ⊢M ′2 v : ∆(x) ϕ; Φ ⊨
∑

a<I M
′
2 ≤M2

The inductive hypothesis yields a, ϕ; a < I,Φ; y : σ,Γ ⊢M1+M ′2
t{v/x} : τ . From this,

the goal follows from the typing rule Lam (in Figure 4.2).

• Case µfy. t. Similarly to the above case (also with parametric splitting).

• Case t = ifz t1 then t2 else t3; we have:

ϕ; Φ; ∆1 ⊢K1 t1 : Nat[J] ϕ; J ≳ 0,Φ; ∆2 ⊢K2 t2 : ρ ϕ; 0 < J,Φ; ∆2 ⊢K2 t3 : ρ

ϕ; Φ ⊢ x : σx,Γ ⊑ ∆1 ⊎∆2 ϕ; Φ ⊨ K1 + K2 ≤M1

Similarly to the application case, we split ∆i and get two typings for v. We use the
inductive hypothesis on the typing of t1 and the first typing of v. We also use the
inductive hypotheses of t2 and t3 with the second typing of v. Then, the goal follows
from Ifz.

• Cases Succ(t) and Pred(t). Follows from the inductive hypothesis and the respective
typing rule.

Subject reduction states that the weight decreases after every β-substitution step:

Theorem 5.9 (Subject reduction of dℓPCFv). Let ϕ; Φ; ∅ ⊢M t : ρ, and let t ≻i t
′ be a step.

Then there exists an index term M ′ such that ϕ; Φ; ∅ ⊢M ′ t′ : ρ and ϕ; Φ ⊨ i + M ′ ≤M .

Proof (sketch). By induction on the small step. The context reduction cases are trivial.
We outline the interesting head reduction cases in the lemmas below.

Lemma 5.10 (Subject reduction, case λ-application). Let ϕ; Φ; ∅ ⊢M (λx. t) v : ρ. Then
there exists an index term M ′ such that ϕ; Φ; ∅ ⊢M ′ t{v/x} : ρ and ϕ; Φ ⊨ 1 + M ′ ≤M .

Proof. By inversion, we get:

a, ϕ; a < I,Φ;x : σ ⊢M1 t : τ ϕ; Φ; ∅ ⊢M2 v : σ{0/a} ϕ; Φ ⊨ 1 ≤ I

ϕ; Φ ⊢ τ{0/a} ⊑ ρ ϕ; Φ ⊨ (I +
∑
a<I

M1) + M2 ≤M

We can substitute 0 for a in the first typing and remove the constraint 0 < I. With the
substitution lemma (Lemma 5.8), we can type:

ϕ; Φ; ∅ ⊢M ′:=M1{0/a}+M2
t{v/x} : τ{0/a} ⊑ ρ

Finally, it is easy to see that this weight is less than M .

Soundness 53

Lemma 5.11 (Subject reduction, case fixpoint application). Let ϕ; Φ; ∅ ⊢M (µfx. t) v : ρ.
Then there exists an index term M ′ such that ϕ; Φ; ∅ ⊢M ′ t{µfx. t/f, v/x} : ρ and ϕ; Φ ⊨
1 + M ′ ≤M .

Proof (sketch). Part of the proof can be reduced to the previous case: Since

(λx. t{µfx. t/x}) v ≻1 t{µfx. t/f, v/x}

it suffices to show that the left term has type ρ. By inverting the typing of the fixpoint
application, we get:

ϕ; Φ; ∅ ⊢K1 µfx. t : [a < 1] · (σ ⊸ τ) ϕ; Φ; ∅ ⊢K2 v : σ{0/a}

ϕ; Φ ⊢ τ{0/a} ⊑ ρ ϕ; Φ ⊨ K1 + K2 ≤M

Thus, we already have a typing for v and it suffices to show: ϕ; Φ; ∅ ⊢K1 λx. t{µfx. t/x} :
[a < 1] · (σ ⊸ τ). We can now forget everything about v, and we proceed in the following
lemma.

Lemma 5.12 (Subject reduction, case fixpoint application, auxiliary). If ϕ; Φ; ∅ ⊢M
µfx. t : [a < 1] · (σ ⊸ τ), then ϕ; Φ; ∅ ⊢M λx. t{µfx. t/f} : [a < 1] · (σ ⊸ τ).

Proof (sketch). Inverting the fixpoint typing yields a recursion forest I consisting of at
least one tree:

b, ϕ; b < H,Φ; f : [a < I] ·A ⊢J λx. t : [a < 1] ·B (5.1)

a, b, ϕ; a < I, b < H,Φ ⊢ B{0/a, 1 + b +

(
a
△
c
I{1 + b + c/b}

)
/b} ⊑ A (5.2)

ϕ; Φ ⊢ [a < K] ·B{0/a,
a
△
b
I/b} ⊑ [a < 1] · (σ ⊸ τ) (5.3)

with ϕ; Φ ⊨ H ≡ △K
b I and ϕ; Φ ⊨

∑
b<H J ≤ M . Substituting 0 for b in (5.1) and (5.2),

yields:

ϕ; Φ; f : [a < I{0/b}] ·A{0/b} ⊢J{0/b} λx. t : [a < 1] ·B{0/b} (5.4)

a, ϕ; a < I{0/b},Φ ⊢ B{0/a, 1 + 0 +

(
a
△
c
I{1 + c/b}

)
/b} ⊑ A{0/b} (5.5)

With the substitution lemma and (5.4), it suffices to show:

ϕ; Φ; ∅ ⊢M∗ µfx. t : [a < I{0/a}] ·A{0/a}

We apply Fix with I∗ := I{1 + b/b}, M∗ :=
∑

a<H∗ J{1 + b/b}, K∗ := I{0/b}, H∗ :=

△K∗
b I∗, A∗ := A{1 + b/b}, and B∗ := B{1 + b/b}. Visually, these parameters means that

we throw away all trees except for the first tree, and we ‘chop off’ the root node of that
tree.

54 Review of dℓPCFv

We have to show the following typing and subtyping judgements:

b, ϕ; b < H∗,Φ; f : [a < I∗] ·A∗ ⊢J λx. t : [a < 1] ·B∗

a, b, ϕ; a < I∗, b < H∗,Φ ⊢ B∗{0/a, 1 + b +

(
a
△
c
I∗{1 + b + c/b}

)
/b} ⊑ A∗

They follow by substituting 1 + b for b in (5.1) and (5.2). Finally, we have to show:

ϕ; Φ ⊢ [a < K∗] ·B∗{0/a,
a
△
b
I/b} ⊑ [a < I{0/b}] ·A{0/b}

This follows by inverting (5.3) and substituting 0 for a.

We have similar, easy cases for the head reduction cases, for example:3

Lemma 5.13. Let ϕ; Φ; ∅ ⊢M ifz 0 then t1 else t2 : ρ. Then ϕ; Φ; ∅ ⊢M ′ t1 : ρ.

Proof. By inversion of the typing. We get ϕ; Φ ⊢ 0 : Nat[J] and hence ϕ; Φ ⊨ 0 = J .
Therefore, we can remove the true constraint J = 0 from the resulting typing of t1.

Now that we have proved Theorem 5.9, it is easy to show termination of closed dℓPCFv
terms.4 To prove this, we first define a size function on terms:

Definition 5.14 (Size of terms).

|x| := 1 |λx. t| := 1 + |t|
|n| := 1 |µfx. t| := 1 + |t|

|t1 t2| := 1 + |t1|+ |t2| |ifz t1 then t2 else t3| := 1 + |t1|+ |t2|+ |t3|

Lemma 5.15 (Soundness of dℓPCFv). Let ∅; ∅; ∅ ⊢k t : τ . Then there exists a value v and
a number k′, such that t ⇓k′ v and ∅; ∅; ∅ ⊢ck−k′ v : τ .

Proof. We prove the lemma by well-founded induction on the lexicographical order of k
and the size of t. If t is a value, we are done. Otherwise, let t ≻i t′ be the first step
of t.5 Using Theorem 5.9, we get an index term M ′ such that ∅; ∅ ⊨ M ′ + i ≤ k and
∅; ∅; ∅ ⊢M ′ t′ : τ . Since M ′ must also be closed and defined, we can write it as a constant
k′ := [[M ′]] (that is, ⊨ M ′ ≡ k′) and type ∅; ∅; ∅ ⊢k′ t′ : τ . Now, we do a case distinction
on the cost i of the step. If i = 1 (that is, the step was a β-substitution), we can apply
the inductive hypothesis on t′ since k′ − i < k. Otherwise (i = 0), we know that the size
of t′ is smaller than the size of t, so we can also apply the inductive hypothesis on t′.

3In [12], only a lemma like Lemma 5.12 (but with decreasing weight) would be needed, since their
semantics for fixpoint is defined by the rule (µx. t) v ≻1 t{µx. t/x} v, but they do not prove this lemma.
Unrelated to that, they also do not restrict fixpoints to have two binders. So t could be any term that
evaluates to a function.

4In [12], the proof of this theorem is much more complicated. Instead of using the small-step semantics,
the authors define a stack-based closure machine, lift typings to machine configurations, and prove subject
reduction on configurations.

5By the progress lemma of PCF (see Lemma 2.8), it is guaranteed that such a step exists (and can be
computed).

Tight bounds and precise typings 55

Corollary 5.16 (Soundness of dℓPCFv programs). Theorem 4.5 (1) holds for dℓPCFv: Let
∅; ∅; ∅ ⊢ck t : Nat[I] be a dℓPCFv typing. Then there is a k′ ≤ k and a constant n such that
t ⇓k′ n and ⊨ n ⊑ I. In particular, if ⊨ I ≡ m, then m = n.

5.4 Tight bounds and precise typings

As claimed in Chapter 3, we have shown that the (static) weight of a typing of a closed
term is an upper bound on its (dynamic) cost. From the perspective of BLL, this holds
since only those resources can be consumed (i.e. in applications) that have been allocated
before (i.e. in λ-abstractions and fixpoints). However, the subsumption rule allows us to
increase the weight arbitrarily. In a precise (or linear) typing, we disallow wasting of
resources. For example, in the following typing, we allocate 42 resources, which are then
pushed into the context but never used:

ϕ; Φ;x : [b < 42] · · · · ⊢0 0 : Nat[0]

ϕ; Φ; ∅ ⊢1 (λx. 0) : [a < 1] · (([b < 42] · · · ·) ⊸ Nat[0]) ϕ; Φ; ∅ ⊢42 λx. x : [b < 42] · (Nat[b] ⊸ Nat[b])

ϕ; Φ; ∅ ⊢43 (λx. 0) (λx. x) : Nat[0]

To ensure that exactly that many resources are allocated as are actually consumed, we
restrict subsumption to ≡ (and =) instead of ⊑ (and ≤). Furthermore, the contexts of
closed terms must be empty or consist of disposable types, i.e. those types that do not
carry any resources. Formally, we define:6

Definition 5.17 (Disposable types). The following (modal) types are disposable:

• ground types, i.e. Nat[I], and

• modal types with bound zero ([a < 0] ·A).

A context is disposable if it only assigns disposable types to variables. In particular, ∅ is
disposable.

Definition 5.18 (Precise typing). A typing ϕ; Φ; Γ ⊢M t : τ is precise, if:

• In all uses of subsumption, ≡ is used instead of ⊑ and ≤,

• The rules for variables and constants are changed such that unused types in the
contexts are disposable:

Γ disposable

ϕ; Φ; Γ ⊢0 n : Nat[n]

Γ disposable

ϕ; Φ;x : σ,Γ ⊢0 x : σ

6In [11, 12], the second restriction on precise typings is not made. Subject reduction does not hold for
their definition of precise typings. The above example is a counter-example: We cannot assign the weight
43− 1 to the successor term 0. However, this weaker definition suffices to show completeness.

56 Review of dℓPCFv

We can now show that the weight of a precise typing of a closed program is a tight
bound on its execution cost. For this, we need to re-prove the substitution and subject
reduction lemmas (Lemma 5.8 and Theorem 5.9, respectively). In particular, we want
to show that subject reduction preserves precision. Note that in the substitution case
n{v/x}, the weight of the typing should be M1 + M2 (where ϕ; Φ ⊨ M1 ≡ 0), but the
overall weight must be 0. Thus, we have to show the following lemma, which implies that
ϕ; Φ ⊨ M2 ≡ 0 since σx is disposable.

Lemma 5.19. For a precise typing ϕ; Φ; Γ ⊢M v : τ where τ is disposable, we have
ϕ; Φ ⊨ M ≡ 0.

Proof. By induction (or case analysis) on the precise value typing.

Theorem 5.20 (Precise subject reduction of dℓPCFv). Let ϕ; Φ; ∅ ⊢M t : ρ be a precise
typing, and let t ≻i t

′ be a step. Then there exists an index term M ′ such that ϕ; Φ; ∅ ⊢M ′
t′ : ρ and ϕ; Φ ⊨ i + M ′ ≡M .

Corollary 5.21 (Precise soundness of dℓPCFv). Let ∅; ∅; ∅ ⊢K t : τ be a precise typing
and t ⇓k v. Then ∅; ∅; ∅ ⊢K .−k v : τ is a precise typing.

Corollary 5.22 (Precise soundness of dℓPCFv). Let ∅; ∅; ∅ ⊢K t : τ be a precise typing
and t ⇓k v, and let τ be disposable. Then ⊨ K ≡ k and ∅; ∅; ∅ ⊢0 v : τ .

Corollary 5.23 (Precise soundness of dℓPCFv for programs). Theorem 4.5 (2) holds for
dℓPCFv: Let ∅; ∅; ∅ ⊢cK t : Nat[I] be a precise typing and t ⇓k n. Then ⊨ K ≡ k and
⊨ I ≡ n.

The above corollaries entail that the weight and Nat-refinements of terminating pro-
grams must be defined. Thus, it is sound to add the constraint ϕ; Φ ⊨ K1 ↓ to the rule App
(in Figure 4.2), where K1 is the weight of t1, but only for precise typings: If t1 diverges,
the application t1 t2 also diverges, and thus t2 does not need to be typed. Similarly, in the
rule Ifz, we can add the constraint J ≡ 0 to the typing of t2 instead of 0 ≳ J .

5.5 Completeness

Completeness can be proved by means of subject expansion. The key lemmas will be the
joining lemmas and converse substitution.

Subject expansion roughly states:

Let t be a simply typed PCF term, and let t ≻ t′. Furthermore, assume a
dℓPCFv typing ϕ; Φ; ∅ ⊢M t′ : τ . Then we can show ϕ; Φ; ∅ ⊢M t : τ .

However, this does not hold in general! Consider the following counter-example:

(λx. x 0 + x (λy. 0) 1) (λz. z) ≻ (λz. z) 0 + (λz. z) (λy. 0) 1

Clearly, the successor term t′ can be typed in dℓPCFv; however, it is not possible to type
t: We would have to type λz. z with a type that has the shape Nat → Nat and also has

Completeness 57

the shape (Nat → Nat) → (Nat → Nat). As t is not even typeable in PCF, it is also not
typeable in dℓPCFv.

To overcome this problem, we make some restrictions on the backward step and the
dℓPCFv typing of t′. Intuitively, we only allow successor terms t′ that are the result of
applying subject reduction on a simply typed term t. The skeleton (shape) of the dℓPCFv
typing of t′ must be exactly such a shape. In the next section, we formally define skeletons
of typings.7

5.5.1 PCF skeletons

Skeletons of PCF or dℓPCF typings are a data structure that describes all structural choices
that can be made in a typing derivation. There is only one such choice, namely the type
τ1 in the PCF application typing rule:

Γ ⊢ t1 : A→ B Γ ⊢ t2 : A

Γ ⊢ t1 t2 : B

Definition 5.24 (Skeletons). Skeletons are labelled trees, where each node is labelled by
the name of a PCF typing rule. For the rule App, we additionally store the type τ1.

s ::= Var
∣∣ Const ∣∣ Succ s ∣∣ Pred s ∣∣ Lam s

∣∣ Fix s ∣∣ Ifz s1 s2 s3 ∣∣ AppAs1 s2

We define the skeleton of PCF typings in the obvious way. We write Γ ⊢ t : τ @ s for a
(simple) PCF typing with skeleton s.

Fact 5.25. Two PCF typings Γ ⊢ t : τ are equal if and only if their skeletons are equal.

A similar lemma for dℓPCFv – the joining lemma – will be the subject of the next
section.

PCF subject reduction and skeletons

We can extend the step relation t ≻i t
′ to pairs of terms and skeletons: (t; s) ≻i (t′; s′)

says that the closed term t steps to t′, and if t has a typing with skeleton s, then t′ has a
typing with skeleton s′. See Figure 5.2 for the reduction rules.

We abbreviate (t; s1){(v; s2)/x} := (t{v/x}; subst(x; t; s1; s2)), where subst(x; t; s1; s2)
returns a new skeleton where we substitute s2 for all Var in s1 that correspond to x in t:

Definition 5.26 (Term and skeleton substitution).

subst(x; y;Var; s2) :=

{
s2 x = y

Var x ̸= y

subst(x;n; s1; s2) := s1

subst(x;Succ(t);Succ s1; s2) := Succ (subst(x; t; s1; s2))

7The idea of typing skeletons comes from [11, 12]. However, they do not define skeletons as inductive
data types. Our explicit definition of skeletons was very helpful in our Coq formalisation of dℓPCFv.

58 Review of dℓPCFv

(Succ(n);Succ Const) ≻0 (1 + n;Const) (Pred(n);PredConst) ≻0 (n .− 1;Const)

(t; s) ≻i (t′; s′)

(Succ(t);Succ s) ≻i (Succ(t′);Succ s′)

(t; s) ≻i (t′; s′)

(Pred(t);Pred s) ≻i (Pred(t′);Pred s′)

(ifz 0 then t2 else t3; Ifz Const s2 s3) ≻0 (t2; s2) (ifz 1 + n then t2 else t3; Ifz Const s2 s3) ≻0 (t3; s3)

(t1; s1) ≻i (t′1; s′1)

(ifz t1 then t2 else t3; Ifz s1 s2 s3) ≻i (ifz t′1 then t2 else t3; Ifz s′1 s2 s3)

((λx. t) v;AppA (Lam s1) s2) ≻1 (t; s1){(v; s2)/x}

((λx. t) v; Lam s1){(µfx. t;Fix (Lam s1))/f} ≻1 (t′; s′)

((µfx. t) v;AppA (Fix (Lam s1)) s2) ≻1 (t′; s′)

(t1; s1) ≻i (t′1; s′1)

(t1 t2;AppAs1 s2) ≻i (t′1 t2;AppAs′1 s2)

(t2; s2) ≻i (t′2; s′2)

(v1 t2;AppAs1 s2) ≻i (v1 t
′
2;AppAs1 s

′
2)

Figure 5.2: Small-step reduction rules with skeletons

subst(x;Pred(t);Pred s1; s2) := Pred (subst(x; t; s1; s2))

subst(x; t1 t2;AppAs1 s
′
1; s2) := AppA (subst(x; t; s1; s2)) (subst(x; t; s′1; s2))

subst(x; ifz t1 then t2 else t3; Ifz s1 s2 s3; s) := Ifz (subst(x; t1; s1; s)) (subst(x; t2; s2; s))

(subst(x; t3; s3; s))

We can extend the standard PCF subject reduction proof with skeletons:

Lemma 5.27 (PCF substitution with skeletons). Let x : A,Γ ⊢ t : B@s1 and ∅ ⊢ v : A@s2.
Then Γ ⊢ t{v/x} : B @ subst(x; t; s1; s2).

Lemma 5.28 (PCF subject reduction with skeletons). If Γ ⊢ t : B @ s for a closed term
t, and (t; s) ≻ (t′; s′), then Γ ⊢ t′ : B @ s′.

In the completeness proof, as in [12], we only produce precise typings.8 We write
ϕ; Φ; Γ ⊢M t : τ @ s for a precise typing with skeleton s.

Precise typing are needed in the joining lemmas, since the following fact does not hold
for non-precise subtypings:

Fact 5.29 (Sums commute over type equivalence). Let ρ1 = σ1 ⊎ σ2 and ρ2 = τ1 ⊎ τ2. If
Φ ⊢ σi ≡ τi for i = 1, 2, then Φ ⊢ ρ1 ≡ ρ2.

It is easy lift the index term substitution lemma (Lemma 5.8) to precise typings with
skeletons. We will also see that inversion of precise typings gets slightly easier.

8For completeness, it would suffice to only restrict subsumption to equivalences, as in [12].

Completeness 59

5.5.2 The explosion typing rule

The following lemma states that we can always construct a dℓPCFv typing given a simple
typing, if the constraint is unsatisfiable. As a corollary, we can type every simply typed
PCF value with a ‘trivial’ type.

Lemma 5.30 (Explosion subtyping rule). Let (|σ|) = (|τ |) and let Φ be contradictory, i.e.
ϕ; Φ ⊨ ⊥. Then ϕ; Φ ⊢ σ ⊑ τ . (By symmetry we also have ϕ;⊥ ⊢ σ ≡ τ .) The same holds
for linear types (|A|) = (|B|).
Proof (sketch). By induction on the shape of the two types. All semantic entailments
ϕ; Φ ⊨ · · · follow by ex falso quodlibet.

Lemma 5.31 (Explosion typing rule). Let Ctx ⊢ t : A @ s be a simple typing, and let
(|τ |) = A. Furthermore, let ϕ; Φ ⊨ ⊥. Then we have ϕ; Φ; Γ ⊢M t : τ @ s.

Proof (sketch). By induction on the simple typing. All subtyping obligations are dis-
charged by Lemma 5.30.

In the fixpoint case, we choose K = 0 and hence H = 0. The typing obligation
b, ϕ; b < H,Φ;x : [a < I] · A,∆ ⊢J λx. t : [a < 1] · B follows by induction, since the
constraint contains (even two) contradictions. A and B are arbitrary linear types with
the right shape; J is arbitrary.

All other cases are similar.

Lemma 5.32 (Trivial typings for values). Let Γ̂ be a simple context and let Γ̂ ⊢ v : A@ s
be a simple PCF typing. Then we can construct a ‘trivial’ precise dℓPCFv typing ϕ; Φ; Γ ⊢0
v : τ @ s with (|Γ|) = Γ̂ and (|τ |) = A.

Proof (sketch). Case distinction on the value v.

• Case v = n. Use rule Const (with an arbitrarily context).

• Case v = λx. t. Let (|σ ⊸ τ |) = A be arbitrarily chosen, such that a is a fresh index
variable in σ ⊸ τ . We type v as [a < 0] · (σ ⊸ τ) using rule Lam and Lemma 5.31.

• Case v = µfx. t. As above. We define an empty recursion tree (I arbitrary, K = 0
and thus H = 0).

5.5.3 Creating (bounded) sums

In the ‘joining lemmas’, which are essential for the converse substitution, we need to
construct binary and bounded sums. Recall that there are syntactic restrictions in the
definition of sums. For example, Nat[I1]⊎Nat[I2] is only defined if I1 = I2. For quantified
types, the second linear component must be equal to the first but shifted by the first
bound. For quantified types, it is easy though to define types that are not equal but
equivalent (≡).9

9These lemmas are mentioned in [11] (see Lemma 5.1 there). However, the ‘proof’ given there is wrong.
They also make the unnecessary assumption that the language of index terms Lℓ

idx is universal in some

60 Review of dℓPCFv

Creating binary sums

To create binary sums of quantified types, we need a ‘case distinction’ operation on types.
We always assume that the two types have the same PCF structure.

Definition 5.33 (Case distinction for types). Let C be a constraint and assume that the
(modal/linear) types in the if and else branches below have the same shape. We define:

if C thenσ1 ⊸ τ1 elseσ2 ⊸ τ2 := (if C thenσ1 elseσ2) ⊸ (if C then τ1 else τ2)

if C thenNat[I1] else Nat[I2] := Nat[if C then I1 else I2]

if C then [a < I1] ·A1 else [a < I2] ·A2 := [a < if C then I1 else I2] · (if C thenA1 elseA2)

Lemma 5.34 (Correctness of case distinction). The equivalence ϕ; I < J ⊢ if I < J then τ1
else τ2 ≡ τ1 holds. Also, the converse holds for J ≤ I.

Lemma 5.35 (Type case distinction and substitution). For every index substitution θ,
the following equation holds: (if C then τ1 else τ2)θ = if Cθ then τ1θ else τ2θ.

Lemma 5.36 (Creating binary sums of quantified types). Let τ1 = [a < I1] · A and
τ2 = [a < I2] ·B be types with (|τ1|) = (|τ2|). Then we can define types ρ1 and ρ2 such that
ϕ; ∅ ⊢ τ1 ≡ ρ1, ϕ; ∅ ⊢ τ2 ≡ ρ2, and ρ1 ⊎ ρ2 is defined.

Proof. Define C := if a < I1 thenA elseB{a− I1/a}, and:

ρ1 := [a < I1] · C
ρ2 := [a < I2] · C{a + I1/a}
ρ3 := [a < I1 + I2] · C

The syntactic restriction on the sum ρ1 ⊎ ρ2 = ρ3 holds trivially. Note that A and C are
not equal, but they are equivalent under the assumption a < I1 (with Lemma 5.34).

We can ‘construct’ a sum of Nat[I1] and Nat[I2] in a trivial way if we assume that the
index terms are equivalent:

Lemma 5.37 (Creating binary sums of Nat types). Let τi = Nat[Ii] and ϕ; Φ ⊨ I1 = I2.
Then we can define types ρ1, ρ2 such that ϕ; Φ ⊢ τi ≡ ρi, and ρ1 ⊎ ρ2 is defined.

Proof. Choose ρ1 = ρ2 = ρ3 = Nat[I1]. Then clearly ρ1 ⊎ ρ2 = ρ3 and ϕ; Φ ⊢ τi ≡ ρi.

Creating bounded sums

When creating bounded sums, and in the parametric joining lemma, we often need to
‘decompose’ a sum c = b +

∑
c<a J into the ‘index’ a and the ‘offset’ b < J{a/c}. This

can be done using a primitive recursive function, assuming that a is bounded:

sense. We only need to extend Lℓ
idx with a primitive recursive function findSlot. For completeness of

natural functions, though, we need to extend Lℓ
idx , which we will formalise in Section 5.5.8.

Completeness 61

Definition 5.38 (Sum decomposition). Let I : Nat and J : Nat→ Nat be a function. We
define the higher-order function findSlot I J : Nat→ Nat× Nat:

findSlot (1 + I) J x := (0, x) if x < J(0)

findSlot (1 + I) J x := (1 + a, b) ow. and (a, b) = findSlot I (λn. J(1 + n)) (x− J(0))

Note that the function findSlot I J is only partially defined.

Lemma 5.39 (Correctness of sum decomposition). Let f−1 denote findSlot I J . Then the
following propositions hold:

1. ∀a b. a < I ∧ b < J(a) ∧ f−1
(
b +

∑
d<a J(d)

)
= (a′, b′) =⇒ a = a′ ∧ b = b′

2. ∀a b c. c < ∑
d<I J(d) ∧ f−1(c) = (a, b) =⇒ c =

(
b +

∑
d<a J(d)

)
∧ a < I ∧ b < J(a)

Proof. Both propositions can be proved by induction on I. Note that the assumptions
always imply that 0 < I, and thus f−1 is defined.

We extend our language of index terms with the two operators πi(findSlota I J c) (with
i = 1, 2). This notation makes explicit that c is a free variable of the operator and a is
the free variable of J . For example, we could implement the operators using the following
defining equations:

π1(findSlota I J c) ={
if c < J{0/a} then 0 else 1 + π1(findSlota (I .− 1) (J{1 + a/a}) (c .− J{0/a})) if I > 0

⊥ if I = 0

π2(findSlota I J c) = c .−∑
b<π1(findSlota I J c) J

Now, we use this operator to create bounded sums of quantified types.

Lemma 5.40 (Creating bounded sums of quantified types). Let σ = [b < J] · A, where
a is free in J . Let I be another index term (closed in ϕ). Then we can define a type σ′,
such that a < I ⊢ σ′ ≡ σ and

∑
a<I σ

′ is defined.

Proof. Let f−1 := findSlot I J ; then we define:

A′ := A{π1(f−1(c))/a, π2(f−1(c))/b}
σ′ := [b < J] ·A′{b +

∑
d<a

J{d/a}/c}∑
a<I

σ′ = [c <
∑
a<I

J] ·A′

We have a < I ⊢ σ′ ≡ σ, which follows from Lemma 5.39 (1).

62 Review of dℓPCFv

5.5.4 Joining lemmas

In the App and Ifz cases of the proof of converse substitutions, the inductive hypotheses
will yield two typings of a closed value v with the same skeleton. The joining lemma says
that we can ‘join’ the typings; the new type is the binary sum of the two types.

One key lemma for the binary joining lemma is a case distinction lemma:

Lemma 5.41 (Case distinction typing lemma). Let C be a constraint. Let Φi; Γi ⊢Mi t :
τi @ s be two typings (i = 1, 2). Assume that the PCF structures of τi and Γi(x) (for all
variables x in the domain of Γ1 and Γ2) are equal. Then we can construct a typing for:

if C thenΦ1 elseΦ2; if C thenΓ1 elseΓ2 ⊢if C thenM1 elseM2 t : if C then τ1 else τ2 @ s

The same holds for subtyping judgements.

Proof. By induction on the structure of the derivations.

We can refine this lemma to a form that is directly useful for the joining lemma:

Corollary 5.42 (Refined case distinction typing lemma). Let a, ϕ; a < I1,Φ; Γ1 ⊢M1 t :
ρ @ s and a, ϕ; a < I2,Φ; Γ2 ⊢M2 t : ρ{a + I1/a}@ s. Then:

a, ϕ; a < I1 + I2,Φ; if a < I1 thenΓ1 elseΓ2{a− I1/a} ⊢if a<I1 thenM1 elseM2{a−I1/a} t : ρ @ s

Lemma 5.43 (Joining). Let v be a closed value. Given two typings ϕ; Φ; ∅ ⊢Mi v : τi @ s
with the same skeleton (i = 1, 2), we can define types τ = τ ′1 ⊎ τ ′2 with ϕ; Φ ⊢ τ ′i ≡ τi, and
derive a typing ϕ; Φ; ∅ ⊢M1+M2 v : τ @ s.

Proof. Case distinction on v.

• Case v = n. Then τi = Nat[Ii] with ϕ; Φ; ∅ ⊨ I1 = I2. Let τ = Nat[I1] ⊎ Nat[I1]. We
can type ϕ; Φ; ∅ ⊢0 n : τ .

• Case v = λx. t. We invert both typings (i = 1, 2):

a, ϕ; a < Ii,Φ;x : σi ⊢Ki t : τ

ϕ; Φ; ∅ ⊢Mi:=Ii+
∑

a<Ii
Ki

λx. t : ρi = [a < Ii] · (σi ⊸ τi)

The goal follows from Corollary 5.42 and the rule Lam.

• Case v = µfx. t. The two typings yield two recursion forests described by Ii con-
taining Ki trees and consisting of Hi nodes each. We define a new recursion forest
I∗ of size K1 + K2 by:

I∗ := if b < H1 then I1 else I2{b−H1/b}

Obviously, the size of the new recursion tree is H∗ = △K1+K2
b I∗ = △K1

b I1+△K2
b I2 =

H1 + H2. We apply the rule Fix; the typing and subtyping goals follow by case-
distinction on b < H1 using Corollary 5.42, as in the λ case.

Completeness 63

Parametric joining is a generalisation of joining, were we assume L typings and build
a bounded sum:

Lemma 5.44 (Parametric joining). Let c, ϕ; c < L,Φ; ∅ ⊢M v : ρ. Then there exists a ρ′

with c, ϕ; c < L,Φ ⊢ ρ ≡ ρ′ and ϕ; Φ; ∅ ⊢∑
c<L M v :

∑
c<L ρ′ (with the same skeleton).

The proof of the above lemma can be found in Appendix A.1.1. The fixpoint case
is complicated, because we also need to join recursion forests. The corresponding (para-
metric) joining proofs for the call-by-push-value variant of dℓPCFpv in Chapter 7 will be
much simpler because we do not need to join recursion forests there.

5.5.5 Converse substitution

Converse substitution is the converse of the substitution lemma (Lemma 5.8). In general,
converse substitution states that if t{v/x} has type τ , then we can type ⊢ v : σ and
x : σ ⊢ t : τ . However, this does not hold for dℓPCFv: Consider again the counter-example
from the beginning of this section:

(x 0 + x (λy. 0) 0){(λz. z)/x}
Here, the identity function would have to be typed with a types of the shapes Nat→ Nat
and (Nat → Nat) → (Nat → Nat). However, we can only join two typings if the typings
that have the same skeletons and compatible types. Therefore, we must assume that v
only needs to be typed with one PCF skeleton, which is formalised below.

Lemma 5.45 (Converse substitution). Let v be a closed value. Assume the simple PCF
typings x : Ax, (|Γ|) ⊢ t : (|ρ|) @ s1 and ∅ ⊢ v : Ax @ s2 for a closed value v. Furthermore,
assume the dℓPCFv typing ϕ; Φ; Γ ⊢M t{v/x} : ρ @ s′, where s′ = subst(x; t; s1; s2), as
defined in Definition 5.26. Then there exist index terms N1 and N2, and a type σ, such
that:

ϕ; Φ;x : σ,Γ ⊢N1 t : ρ@ s1 ϕ; Φ; ∅ ⊢N2 v : σ @ s2 ϕ; Φ ⊨ N1 +N2 ≡M (|σ|) = Ax

Proof (sketch). By size-induction on t. In every case of the induction, we can assume
without loss of generality that x is a free variable of t, and thus Γ(x) is defined. Otherwise,
by assumption we can type t{v/x} = t, and we type v with a trivial type (Lemma 5.32).
We now make a case distinction on t.

• Case t = n. Contradicts the assumption that x is a free variable of t.

• Case t = x, t{v/x} = v, and s1 = Var, s′ = s2. Then we can type ϕ; Φ;x : ρ ⊢0 x :
ρ @ s1 and ϕ; Φ; ∅ ⊢M v : ρ @ s2.

• Case t = t1 t2. By inversion on the dℓPCFv typing, we have:

ϕ; Φ; ∆1 ⊢K1 t1{v/x} : [a < 1] · (σ ⊸ τ) @ subst(x; t1; s11; s2)

ϕ; Φ; ∆2 ⊢K2 t2{v/x} : σ{0/a}@ subst(x; t2; s12; s2)

ϕ; Φ ⊨ K1 + K2 ≡M

ϕ; Φ ⊢ ∆1 ⊎∆2 ≡ Γ

64 Review of dℓPCFv

with s1 = App (|σ|) s11 s12, and ρ = τ{0/a}. The inductive hypotheses yield typings
for t1 and t2, and two typings for v:

ϕ; Φ;x : σ1,∆1 ⊢N11 t1 : [a < 1] · (σ ⊸ τ) @ s11 ϕ; Φ; ∅ ⊢N12 v : σ1 @ s2 ϕ; Φ ⊨ N11 +N12 ≡ K1

ϕ; Φ;x : σ2,∆2 ⊢N21 t2 : σ{0/a}@ s12 ϕ; Φ; ∅ ⊢N22 v : σ2 @ s2 ϕ; Φ ⊨ N21 +N22 ≡ K2

We can join the two value typings using Lemma 5.43 since they have the same
skeleton s2.

10 Applying the joining lemma yields types σ′i equivalent to σi (for
i = 1, 2) and a typing ϕ; Φ; ∅ ⊢N12+N22 v : σ′1 ⊎ σ′2 @ s2. Now, we can type ϕ; Φ;x :
σ′1 ⊎ σ′2,∆1 ⊎∆2 ⊢N11+N21 t1 t2 : τ{0/a}@ App (|σ|) s11 s12.

• Case t = λy. t′. We have:

a, ϕ; a < I,Φ; y : σ,∆ ⊢K t{v/x} : τ ϕ; Φ ⊢ [a < I] · (σ ⊸ τ) ≡ ρ

ϕ; Φ ⊨ I +
∑

a<I K ≡M ϕ; Φ ⊢∑
a<I ∆ ≡ Γ

We apply the inductive hypothesis on the typing of t{v/x} and get a type σx such
that a, ϕ; a < I,Φ;x : σx, y : σ,∆ ⊢N1 t : τ and a, ϕ; a < I,Φ; ∅ ⊢N2 v : σx with
a, ϕ; a < I,Φ ⊨ N1 + N2 = K. We apply parametric joining (Lemma 5.44) on this
typing, and get:

ϕ; Φ; ∅ ⊢∑
a<I N2

v :
∑

a<I σ
′ a, ϕ; a < I,Φ ⊢ σ′ ≡ σx

Thus, we can type ϕ; Φ;x :
∑

a<I σ
′,
∑

a<I ∆ ⊢I+∑
N1

λy. t : [a < I] · (σ ⊸ τ), and

we have ϕ; Φ ⊨ (I +
∑

a<I N1) + (
∑

a<I N2) ≡M .

• The other cases are similar.

5.5.6 Subject expansion

Lemma 5.46 (Subject expansion of dℓPCFv). Let (t; s) ≻i (t′; s′). Assume a PCF typing
∅ ⊢ t : (|ρ|) @ s, and a dℓPCFv typing ϕ; Φ; ∅ ⊢M t′ : ρ @ s′. Then we can type ϕ; Φ; ∅ ⊢i+M

t : ρ @ s.

Proof (sketch). Induction on the small-step semantics. The only non-trivial cases are the
two β-substitution cases (where the weight increases by one). The proof of these cases can
be found in Appendix A.1 (see Lemmas A.7 and A.8).

5.5.7 Completeness for programs

Completeness for PCF programs follows directly from subject expansion. This theorem
states that all terminating PCF programs can be typed with the type Nat[n], where n is
the result. The weight of the typing is exactly the number of β substitution steps.

Corollary 5.47 (Subject expansion, multiple steps). Let (t; s) ≻∗k (t′; s′), where k is the
number of β-substitutions in the execution. Assume a PCF typing ∅ ⊢ t : (|ρ|), and a
dℓPCFv typing ϕ; Φ; ∅ ⊢M t′ : ρ @ s′. Then ϕ; Φ; ∅ ⊢k+M t : ρ @ s.

10This is the crucial point why we needed to introduce skeletons!

Completeness 65

Theorem 5.48 (Relative completeness of dℓPCFv for programs). Let ∅ ⊢ t : Nat be a PCF
program, and assume t ⇓k n. Then we can type ∅; ∅; ∅ ⊢k t : Nat[n].

Proof. By assumption, we have ∅ ⊢ t : Nat. Since t is terminating (say, after k β-
substitutions), it terminates to a constant, which can be typed in dℓPCFv: ∅; ∅; ∅ ⊢0 n :
Nat[n]. By the above corollary, we have ∅; ∅; ∅ ⊢k t : Nat[n].

5.5.8 Completeness for natural functions

For total natural functions f : Nat → Nat, it is shown in [12] that we can give a typing
that abstracts over the value. This typing will have an index variable a free, and the type
is [c < 1] · (Nat[a] ⊸ Nat[f(a)]). This means that this typing can be later instantiated by
substituting an index term for c, as we did in our dℓT examples in Section 4.6.

In this subsection, we will prove the uniformisation lemma, as outlined in [12]. We
will also discuss some applications of this lemma.

The uniformisation lemma states that if we can type a typing for all valuations of an
index variable a, then we can construct a typing where a is free. This means, that we
uniformise (in the terminology of [12]) infinitely many typings into one typing. Note that
this is conceptually different from joining : Joining of infinitely many typings would result
in a typing with infinite weight.

We first define uniformisation of index terms and types. We assume that Lℓidx has an
operator unifc({In}n) that takes an enumeration of index terms and returns a new index
term with c as a free variable, such that the following equation holds for all valuations ν:

∀i : Nat. [[unifc({In}n)]](c := i, ν) = [[Ii]](ν)

This operator can be lifted to constraints, unifc({Cn}n), and constraint lists, unifc({Φn}n).
Similarly, we can ‘uniformise’ enumerations of types, subtypings, and ultimately typings.

Lemma 5.49 (Uniformisation of semantical constraints). If for all n, ϕ; Φn ⊨ Pn, then
c, ϕ; unifc({Φn}n) ⊨ unifc({Pn}n).

Definition 5.50 (Uniformisation of types). Let {τn}n be an enumeration of modal types

with the same PCF shape Â (i.e. (|τn|) = Â for all n). Also, let {An}n be a similar

enumeration of linear types. We define unifc(Â, {τn}n) and unifc(Â, {An}n) by mutual

induction on Â:

unifc(Nat, {Nat[In]}n) := Nat[unifc({In}n ,)]
unifc(Â, {[a < In] ·An}n) := [a < unifc({In}n)] · (unifc(Â, {An}n))

unifc(Â→ B̂, {An ⊸ Bn}n) := unifc(Â, {An}n) ⊸ unifc(B̂, {Bn}n)

We write unifc({τn}n) or simply unifc(τn) if we assume that all types in the enumeration
{τn}n have the same shape.

Lemma 5.51. For all enumerations of types {σn}n, ϕ; ∅ ⊢ unifc({σn}n){k/c} ≡ σk holds
for every constant k.

66 Review of dℓPCFv

Note that the symbol unif is overloaded for enumerations of modal and linear types,
as well for index variables and constraints.

Lemma 5.52 (Uniformisation of subtypings). Let ϕ; Φn;σn ≡ τn for all n be subtypings.
Then we can derive a subtyping c, ϕ; Φ ⊢ unifc(σ) ≡ unifc(τ).

Proof. Follows from Lemma A.4 and Lemma 5.51.

Lemma 5.53 (Uniformisation of modal sums). Let σn⊎τn = ρn for all n. Then unifc(σn)⊎
unifc(τn) = unifc(ρn).

Lemma 5.54 (Uniformisation of bounded sums). Let
∑

a<In
σn ≡ τn for all n. Then∑

a<unifc(In)
unifc(σn) ≡ unifc(τn) (with a ̸= c).

Lemma 5.55 (Uniformisation of typings). Let ϕ; Φn; Γn ⊢Mn t : ρn for all n be typings
with the same skeleton. Then we can derive a typing for the following judgement:

c, ϕ; unifc(Φn); unifc(Γn) ⊢unifc(Mn) t : unifc(ρ)

Proof (sketch). We do induction on t. In every case, we apply the inversion rules under
the quantifier.

• Case t = x. We have ∀n. ϕ; Φn; Γn ⊢M x : ρn. By inverting the typing statement
under the quantifier (∀n), we get:

∀n. ϕ; Φn ⊢ Γn(x) ≡ ρn

The goal follows by uniformisation of subtypings (Lemma 5.52).

• Case t = t1 t2. We invert the enumeration of typings under the quantifier :

∀n. ϕ; Φn; ∆1,n ⊢K1,n t1 : [a < 1] · (σn ⊸ τn)
∀n. ϕ; Φn; ∆2,n ⊢K2,n t2 : σn{0/a} ∀n. ϕ; Φn ⊢ ∆1,n ⊎∆2,n ≡ Γn

∀n. ϕ; Φn ⊢ τn{0/a} ≡ ρi ∀n. ϕ; Φn ⊨ Mn ≡ K1,n + K2,n

(for enumerations {K1,n}n, {K2,n}n, {σn}n, {τn}n, etc.)
all σn and τn have the same PCF shape

∀n. ϕ; Φn; Γn ⊢Mn t1 t2 : ρn

Then we apply the inductive hypotheses on the new typing enumerations of t1 and t2:

c, ϕ; unifc(Φn); unifc(∆1,n) ⊢unifc(K1,n) t1 : unifc([a < 1] · (σn ⊸ τn))

= [a < 1] · (unifc(σn) ⊸ unifc(τn))

c, ϕ; unifc(Φn); unifc(∆2,n) ⊢unifc(K2,n) t1 : unifc(σn{0/a})

Finally, we apply rule App and Lemmas 5.52 and 5.53.

Completeness 67

• Case t = λx. t. We invert the typings:

∀n. a, ϕ; a < In,Φn;x : σn,∆n ⊢Kn t : τn ∀n. ϕ; Φn ⊢
∑

a<In
∆n ≡ Γn

∀n. ϕ; Φn ⊢ [a < In] · (σn ⊸ τn) ≡ ρn ∀n. ϕ; Φn ⊨ In +
∑

a<In
Kn ≡Mn

∀n. ϕ; Φn; Γn ⊢Mn λx. t : ρn

We apply the inductive hypothesis on the enumeration of typings of t:

c, a, ϕ; a < unifc({In}n), unifc({Φn}n);x : unifc({σn}n), unifc({∆n}n)

⊢unifc({Kn}n) t : unifc({τn}n)

Using Lemmas 5.52 and 5.54, we can show:

c, ϕ; unifc({Φn}n) ⊢∑
a<unifc({In}n)

unifc({∆n}n) ≡ unifc({Γn}n)

The goal follows from the rule App; the remaining semantical obligations are easy.

• All other cases are similar.

Theorem 5.56 (Completeness for natural functions). Let t : Nat → Nat be a total PCF
function (not necessarily a λ-abstraction) such that for all i, t(i) ⇓g(i) f(i). Then we can
type this function in dℓPCFv as follows:

a; ∅; ∅ ⊢g(a) t : [c < 1] · (Nat[a] ⊸ Nat[f(a)])

Proof. First we using completeness for programs (since t(i) is a closed program for every i):

∀i. ∅; ∅; ∅ ⊢g(i) t(i) : Nat[f(i)]

Now, we invert each typing. Since the constant i has weight 0, t must have the full weight
g(i). From this, we conclude:

∀i. ∅; ∅; ∅ ⊢g(i) t : [c < 1] · (Nat[i] ⊸ Nat[f(i)])

The goal follows by uniformising this enumeration of typings (using Lemma 5.55).

Notes on the proof of uniformisation of typings In the proof of Lemma 5.55, we
convert an enumeration of dℓPCFv typings into one typing. Because all typing derivations
have the same skeleton, they only differ in the index terms. Essentially, what we do in
the proof is that we ‘overlay’ the typings. A node of the new typing tree, where c is a
free variable, corresponds to the node at the same position in the cth typing tree. In other
words, a case distinction over c is built into all index terms and constraints of every node
in the new typing tree.

We can derive similar theorems as Theorem 5.56, for example for types Nat→ (Nat→
Nat). However, due to the restriction that we can only unify countable sets of typings,
this approach does not work for higher-order functions.

Note that the uniformisation theorem is not useful in practice, since it is morally
impossible to generate countable infinite executions and convert them into typings. In
Chapter 8 we will show how to construct typings without need to execute terms. This
even allows us to type diverging terms.

68 Review of dℓPCFv

Applications of completeness for natural numbers Note that in order to use the
typing of a PCF function ∅ ⊢ v : Nat→ Nat, as provided by the proof of Lemma 5.55, we
first have to substitute a for an index term K that corresponds to the value of argument
of the function. This typing after substitution can only be used once, due to the bound
[c < 1].

Consider the case that v needs to be applied more than once, say K times. For example,
for a < K, we want to apply v to the argument p(a), and v(p(a)) yields the result f(p(a))
in g(p(a)) steps. We can substitute an index term that is equivalent to g(a) for a in the
typing generated by Theorem 5.56, and we also add the constraint a < K:

a; a < K; ∅ ⊢g(p(a)) t : [c < 1] · (Nat[p(a)] ⊸ Nat[f(p(a))])

Now, since we have assumed that v is a value, we can apply Lemma 5.44 on the above
typing, which yields:

∅; ∅; ∅ ⊢∑
a<K g(p(a)) t :∑

a<K

([c < 1] · (Nat[p(a)] ⊸ Nat[f(a)])) ≡ [a < K] · (Nat[p(a)] ⊸ Nat[f(p(a))])

This typing can now be applied K times, and the weight already accounts for these K
applications.

5.6 Embedding of dℓT in dℓPCFv

It is very easy to embed System T inside PCF. We can implement the iteration operator
using unbounded recursion:

iter t1 t2 := µfx. ifzx then t2 else t1 (f (Pred(x)))

In this section, we show that it is also possible to show that the rule iter is admissible in
dℓPCFv. That is, we can derive the following rule:11

a, b, ϕ; b < K, a < I,Φ; ∆1 ⊢M1 t1 : [< 1] · (σ ⊸ σ{1 + a/a})
b, ϕ; b < K,Φ; ∆2 ⊢M2 t2 : σ{0/a}

Γ :=
∑

b<K((
∑

b<I ∆1{I .− 1 .− a/a}) ⊎∆2) M := K +
∑

b<K(I + (
∑

a<I M1) + M2)

ϕ; Φ; Γ ⊢M iter t1 t2 : [b < K] · (Nat[I] ⊸ σ{I/a})

This is a useful rule, since it immediately allows us to lift the typings of the addition and
multiplication functions from Section 4.6, as well as other primitive recursive functions.
This way, we do not have to reason about recursion forests.

Lemma 5.57. The rule iter is admissible in dℓPCFv.

11Without loss of generality, we assume that the variable c in the bound [c < 1] does not occur in σ. (If
it does, it can simply be substituted with 0.) We thus write [< 1].

Embedding of dℓT in dℓPCFv 69

Nat[I{0/b}] ⊸ σ{I/a, 0/c}{0/b} Nat[I{0/b}] ⊸ σ{I/a, 0/c}{K − 1/b}
Nat[I{0/b} − 1] ⊸ σ{I − 1/a, 0/c}{0/b} Nat[I{0/b} − 1] ⊸ σ{I − 1/a, 0/c}{K − 1/b}

· · · · · · · · ·
Nat[1] ⊸ σ{1/a, 1/b, 0/c} Nat[1] ⊸ σ{1/a,K − 1/b, 0/c}
Nat[0] ⊸ σ{0/a, 0/b, 0/c} Nat[0] ⊸ σ{0/a,K − 1/b, 0/c}

Figure 5.3: The type B (depicted as a forest) in the embedding of dℓT in dℓPCFv

Proof. We have to type a fixpoint. For the parameter K of Fix, we just choose the index
term K from the premise. This means, the new recursion forest (described by I∗ as defined
below) consists of K trees. Each of these trees is linear and has length 1 + I (for b < K)
each. This means, the cardinality of the recursion forest is H := △K

b I∗ = K +
∑

b<K I.
Note that both I and I∗ have the variable b free, albeit with different meanings. In I,

b < K denotes the number of the instance of the iteration (which corresponds to the bth

recursion tree in I∗). In I∗, b < H denotes the number of a node in the recursion forest.
Formally, we can define I∗ using the ‘function’ f−1 := findSlotbK (1 + I) and the

following equation:

I∗ := (if a < I{b′/b} then 1 else 0){π1(f−1(b))/b′, π2(f−1(b))/a}

This means that, given the index b < H in the forest, we first compute the number b′ < K
of the tree and the offset a < I in this tree. The node has a child if and only if this offset
is less than I (with the new index variable b′ bound on b).

A visual presentation of the type B arranged in the shape of the recursion forest is
depicted in Figure 5.3. Note that the ‘resulting types’, i.e. Nat[I] ⊸ σ{I/a} occur at the
roots of the forest. Formally, we can define B as follows:

B := (Nat[a] ⊸ σ)θ θ := {π1(f−1(b))/b, I .− π2(f
−1(b))/a}

We choose A such that the subtyping between B and A is trivial: Since a non-leaf node
in I∗ has exactly one child, we can define A := B{1 + b/b}.

Finally, we define J – the weight of the bth node in the forest – using a similar case
analysis. If the node is a leaf, the weight is equal to M2 (i.e. the weight of t2), otherwise
M1 with the corresponding b < K and a < I. The context ∆ is defined similarly:

J := (if a ≡ 0 thenM2 elseM1)θ ∆ := (if a ≡ 0 then∆2 else∆1)θ

We have to type the body of the fixpoint:

b, ϕ; b < H,Φ;x : Nat[a] θ, f : [a < I∗] ·B{1 + b/b},∆ ⊢J ifzx then t2 else t1 (f (Pred(x))) : σθ

b, ϕ; b < H,Φ; f : [a < I∗] ·B{1 + b/b},∆ ⊢J λx. ifzx then t2 else t1 (f (Pred(x))) : [< 1] ·B

We have to type the two cases corresponding to the branches of the case analysis on x:

• Case 0 ≳ aθ. This means that we are at the (bθ)th leaf node in the forest. After
simplification, we thus have to type the following judgement:

b, ϕ; aθ = 0, b < H; ∆2θ ⊢M2θ t2 : σθ ≡ σ{0/a}

70 Review of dℓPCFv

This case follows by applying the substitution θ to the original typing of t2.

• Case aθ > 0. This means that we are at a non-leaf node in the forest and thus
0 < aθ ≤ Iθ and I∗ = 1. We can again simplify the typing judgement:

b, ϕ; aθ > 0, b < H; ∆1θ ⊢M1θ t1 : σθ ≡ σ

This case also follows by applying the substitution θ to the original typing of t1.

The subsumption obligations ϕ; Φ ⊨
∑

b<H J ≡M and ϕ; Φ ⊢ [a < K] ·B{△a
b I/b} ≡ [b <

K] · (Nat[I] ⊸ σ{I/a}) hold by construction. The final subtyping obligation is on the
context also holds by construction:

ϕ; Φ ⊢
∑
b<H

∆ ≡
∑
b<K

((
∑
b<I

∆1{a .− 1 .− I/a}) ⊎∆2)

The above proof clarifies why the context ∆1 has to be ‘reversed’. The following
alternative rule is also admissible, where we ‘swap’ σ instead.

iter2
a, b, ϕ; b < K, a < I,Φ; ∆1 ⊢M1 t1 : [< 1] · (σ{1 + a/a}⊸ σ)

b, ϕ; b < K,Φ; ∆2 ⊢M2 t2 : σ{I/a}
Γ :=

∑
b<K((

∑
a<I ∆1) ⊎∆2) M := K +

∑
b<K(I + (

∑
a<I M1) + M2)

ϕ; Φ; Γ ⊢M iter t1 t2 : [b < K] · (Nat[I] ⊸ σ{0/a})

Chapter 6

Summary of dℓPCFn

The call-by-name version of dℓPCF, dℓPCFn, was initially published in [11]. In this chapter,
we only review and explain this system. We will not prove soundness nor completeness,
but we will derive these results from the same results of dℓPCFpv in the next chapter.

The proofs in [11] are cumbersome, since the authors introduce a closure-based stack
machine; typings have to be lifted to configurations of this machine. The main reason
why closure-based semantics have to be used is that the cost of a CBN execution (i.e. the
number of variable lookups) cannot be defined using small-step operational semantics. We
have discussed in Section 3.3 why this metric is the correct metric for dℓPCFn.

6.1 Syntax of dℓPCFn types

As in the call-by-value version of dℓPCF, there are two syntactic categories of types.

Basic types: σ, τ, ρ ::= Nat[I]
∣∣A ⊸ σ

Modal types: A,B ::= [a < I] · σ
Contexts: Γ,∆ ::= ∅

∣∣ x : A,Γ

For arrow types, the argument is always quantified. This means that we bound how often
(if at all) the argument has to be (re)evaluated.

6.2 (Bounded) sums

The definition of modal sums is simpler as in dℓT and dℓPCFv, since Nat types are not
modal types:

Definition 6.1 (Binary and bounded sums).

A1 = [a < I1] · σ A2 = [a < I2] · σ{a + I1/a}
A1 ⊎A2 = [a < I1 + I2] · σ

A = [c < J] · σ{c +
∑
d<a

J{d/a}/b}∑
a<I

A = [c <
∑
a<I

J] · σ

72 Summary of dℓPCFn

Modal sums can be constructed in exactly the same way as we have shown for dℓPCFv
in Section 5.5.3.

6.3 Typing rules

The typing rules, as published in [11], are shown in Figure 6.1. As in [11], for variety, the
rules do not include an explicit subsumption rule. Instead, there are subtyping judgements
in all premises where needed; the subsumption rule is thus still admissible. Below, we will
explain the different definition of weights, and we will also explain the typing rules.

Explanation of weights

Weights in dℓPCFn are an upper bound on how often variables are looked up. However, this
bound only holds if the initial program is closed, since variable lookups in the contexts are
not counted. We always increment the weight in the application rule, where we account for
the potential number of variable lookups of the argument by the function. For example,
the term (λx. 0) 1 has weight 0, because the variable x is never used. Here, the function
λx. 0 has type ([a < 0] · Nat[1]) ⊸ Nat[0], which means that the argument is not needed,
and thus will be never executed. We could as well apply this function to a diverging term.

Example typing

The following typing, which prima facie looks nonsensical, is valid in dℓPCFn (with an
addition operator):

∅; ∅; ∅ ⊢2 (λx. x + x) : ([a < 2] · Nat[a]) ⊸ Nat[0 + 1]

In the above function, the variable x can be used twice, but with different values each.
The weight of the above function is 2, because when evaluating the function, the variable
x will be used twice.

Although it is not possible to define a closed term of dℓPCFn type [a < 2] ·Nat[a], this
would be possible in an impure extension of dℓPCFn. We discussed a similar issue in the
previous chapter.

Explanation of the typing rules

Variables As noted above, variable access is bounded. In order to use a variable x, the
bound on it has to be shown to be positive.

Lambda In order to type a λ expression, we bound how often the argument may be
evaluated, using an index term I. We simply add [a < I] · σ to the context and type
t : τ . Unlike the call-by-value version of dℓPCF, the weight of λx. t is equal to the
weight of t.

Soundness and completeness 73

Application The argument has to be typed I times, because t potentially needs the
argument I-times. The weight of the application is equal to the weight of t1 plus
the sum over weights of t2 plus I (to account for the I lookups of the argument t2
by the function to which t1 evaluates).

Fixpoint The index term I represents a recursion tree (not a forest, as in dℓPCFv). This
means, that I is a bound on the number of times x may be called in the bth node
in the tree. In other words, the variable x is used I times, and thus is assumed to
have type [a < I] · σ. σ represents the types of the children of node b, and τ is the
type of node b. The type of the fixpoint is equal to the type of the root node. To
the weight

∑
b<H J , we add H .− 1 – one for every edge of the tree – to account for

the lookups of the variable x.

The rules Const, Succ, Pred, and Ifz are exactly as in dℓPCFv.

6.4 Soundness and completeness

Theorem 6.2 (Soundness of dℓPCFn programs). Theorem 4.5 holds for dℓPCFn: Let t be
a closed program (i.e. a PCF term with simple type Nat). Then we can show:

• Let ∅; ∅; ∅ ⊢ck t : Nat[I] be a dℓPCFn typing. Then there is a number k′ ≤ k such that
t ⇓k′ n. In other words, t evaluates to n, and needs at most k variable lookups in the
big-step closure semantics. Furthermore, ⊨ n ⊑ I. In particular, if ⊨ I ≡ m, then
m = n.

• Let ∅; ∅; ∅ ⊢cK t : Nat[I] be a precise typing and t ⇓k n. Then ⊨ K ≡ k and ⊨ I ≡ n.

Theorem 6.3 (dℓPCFn completeness for programs). Let ⟨t; ∅⟩ ⇓k ⟨n; ξ⟩. Then ∅; ∅; ∅ ⊢k
t : Nat[n].

We will prove these theorems as corollaries in the next chapter.

74 Summary of dℓPCFn

ϕ; Φ ⊨ I ⊑ J

ϕ; Φ ⊢ Nat[I] ⊑ Nat[J]

ϕ; Φ ⊢ A2 ⊑ A1 ϕ; Φ ⊢ σ1 ⊑ σ2

ϕ; Φ ⊢ A1 ⊸ σ1 ⊑ A2 ⊸ σ2

ϕ; Φ ⊨ J ≤ I ϕ; a < J,Φ ⊢ σ ⊑ τ

ϕ; Φ ⊢ [a < I] · σ ⊑ [a < J] · τ

ϕ; Φ ⊢ σ ⊑ τ
ϕ; Φ ⊢ τ ⊑ σ

ϕ; Φ ⊢ σ ≡ τ

ϕ; Φ ⊢ A ⊑ B
ϕ; Φ ⊢ B ⊑ A

ϕ; Φ ⊢ A ≡ B

Const
ϕ; Φ ⊢ Nat[n] ⊑ ρ

ϕ; Φ; Γ ⊢M n : ρ

Succ
ϕ; Φ; Γ ⊢M t : Nat[J]
ϕ; Φ ⊢ Nat[1 + J] ⊑ ρ

ϕ; Φ; Γ ⊢M Succ(t) : ρ

Pred
ϕ; Φ; Γ ⊢M t : Nat[J]
ϕ; Φ ⊢ Nat[J .− 1] ⊑ ρ

ϕ; Φ; Γ ⊢M Pred(t) : ρ

Var
ϕ; Φ ⊨ 1 ≤ I ϕ; Φ ⊢ σ{0/a} ⊑ ρ

ϕ; Φ;x : [a < I] · σ,Γ ⊢M x : ρ

Lam
ϕ; Φ;x : A,Γ ⊢M t : τ ϕ; Φ ⊢ (A ⊸ τ) ⊑ ρ

ϕ; Φ; Γ ⊢M λx. t : ρ

App
ϕ; Φ; ∆1 ⊢K1 t1 : ([a < I] · σ) ⊸ τ a, ϕ; a < I,Φ; ∆2 ⊢K2 t2 : σ

ϕ; Φ ⊢ Γ ⊑ ∆1 ⊎
∑
a<I

∆2 ϕ; Φ ⊨ K1 + I +
∑
a<I

K2 ≤M

ϕ; Φ; Γ ⊢M t1 t2 : τ

Fix
b, ϕ; b < H,Φ;x : [a < I] · σ,∆ ⊢J t : τ

a, b, ϕ; a < I, b < H,Φ ⊢ τ{1 + b +

(
a
△
c
I{1 + b + c/b}

)
/b} ⊑ σ ϕ; Φ ⊢ Γ ⊑

∑
b<H

∆

ϕ; Φ;⊨ H .− 1 +
∑
b<H

J ≤M ϕ; Φ ⊢ τ{0/b} ⊑ ρ ϕ; Φ ⊨ H ≡
1
△
b
I

ϕ; Φ; Γ ⊢M µx. t : ρ

Ifz
ϕ; Φ; ∆1 ⊢K1 t1 : Nat[J] ϕ; 0 ≳ J,Φ; ∆2 ⊢K2 t2 : ρ ϕ; 0 < J,Φ; ∆2 ⊢K2 t3 : ρ

ϕ; Φ ⊢ Γ ⊑ ∆1 ⊎∆2 ϕ; Φ ⊨ K1 + K2 ≤M

ϕ; Φ; Γ ⊢M ifz t1 then t2 else t3 : ρ

Figure 6.1: Subtyping and typing rules of dℓPCFn.

Chapter 7

Call-by-push-value dℓPCFpv

In this section, we introduce a (novel) variant of dℓPCF that targets the call-by-push
value variant of PCF. We will see that dℓPCFn and dℓPCFv typings can be translated to
dℓPCFpv typings. Moreover, we can derive soundness and completeness proofs for dℓPCFv
and dℓPCFn from the same properties for dℓPCFpv. In this way, dℓPCFpv subsumes the
other variants. Interestingly, the proofs of these theorems are simpler in dℓPCFpv.

7.1 dℓPCFpv types

As in the simple type system for CBPV (see Section 2.3.2), types are divided into value
types and computation types.

Value types: A ::= [a < I] ·B
∣∣ Nat[I]

Computation types: B ::= FA
∣∣A ⊸ B

Contexts: Γ,∆ ::= ∅
∣∣ x : A,Γ

In the syntax of the simple CBPV types, the lift from computation types to value types is
called U. Here, we refine U with a bound [a < I].

Again, we can erase the annotations and compute the shape of a dℓPCFpv (value/computation)
type, which is a simple CBPV (value/computation) type.

Definition 7.1 (Annotation erasure). By mutual recursion on value/computation types:

(|Nat[I] |) := Nat (|FA|) := F (|A|)
(|[a < I] ·B|) := U (|B|) (|A ⊸ B|) := (|A|)→ (|B|)

In dℓPCFpv, we bound the number of times thunks can be forced. For example, values
of the type [a < 2] · (FNat[1]) are thunked computations that can be forced twice, and
each forcing yields a computation that will terminate as return 1 (or diverge).

Note that the syntax of dℓPCFv’s modal types τ ::= [a < I] · A
∣∣ Nat[I] is similar

to syntax of dℓPCFpv value types. The only difference between dℓPCFv linear types and

76 Call-by-push-value dℓPCFpv

dℓPCFpv computation types is that the latter have the lifting F from value types. Therefore,
we can define modal sums over value types (i.e. A1 ⊎ A2 and

∑
a<I) in the same way we

did for modal types in dℓT and dℓPCFv, see Section 4.3. We can also ‘construct’ them in
the same way, which will be needed in the completeness proof.

7.2 Typing Rules

We have two typing judgements, ϕ; Φ; Γ ⊢cK t : B for computations, and ϕ; Φ; Γ ⊢vK t : A
for values. The typing and subtyping rules are depicted in Figure 7.1. For readability, we
use explicit subsumption rules.

Interestingly, many of the rules are similar to the corresponding rules either in dℓPCFv
or in dℓPCFn. This is summarised in the table below:

both dℓPCFv dℓPCFn new

Const, Ifz Var, App, Lam, Fix Return, Bind,
Thunk, Force,
Succ, Pred

Thunk The thunk rule is similar to the Lam of dℓPCFv. In the dℓPCFv rule, the weight
already accounts for the cost of all applications of the function. In Thunk, the
weight already accounts for the cost of all its potential forcings.

Force As in the dℓPCFv App rule, the cost for the forcing was already accounted for
in Thunk. Therefore, the weight is not increased.

Fixpoint The fixpoint rule is identical to the fixpoint rule of dℓPCFn. We also add H .− 1
to the weight, since x has to be forced at every recursive self-application.

The other rules are self-explanatory.

7.3 Call-by-name translation

Recall from Section 2.3.3 that the function ·n translates PCF terms to CBPV computations.
Below, we will translate dℓPCFn typing to dℓPCFpv typings. The translation preserves the
weight.

dℓPCFn modal types (A ::= [a < I] · σ) are translated to dℓPCFpv value types. Basic
types (σ ::= Nat[I]

∣∣A ⊸ σ) are translated to computation types.

Definition 7.2 (Translation of dℓPCFn types).

([a < I] · σ)n := [a < I] · σn

(Nat[I])n := FNat[I]

(A ⊸ σ)n := An ⊸ σn

dℓPCFn contexts (consisting of modal types) are pointwisely lifted to dℓPCFpv contexts.

Call-by-name translation 77

ϕ; Φ ⊨ I ⊑ J

ϕ; Φ ⊢ Nat[I] ⊑ Nat[J]

ϕ; Φ ⊢ A1 ⊑ A2

ϕ; Φ ⊢ FA1 ⊑ FA2

ϕ; Φ ⊢ A2 ⊑ A1 ϕ; Φ ⊢ B1 ⊑ B2

ϕ; Φ ⊢ A1 ⊸ B1 ⊑ A2 ⊸ B2

ϕ; Φ ⊨ J ≤ I ϕ; a < J,Φ ⊢ B1 ⊑ B2

ϕ; Φ ⊢ [a < I] ·B1 ⊑ [a < J] ·B2

ϕ; Φ ⊢ A1 ⊑ A2

ϕ; Φ ⊢ A2 ⊑ A1

ϕ; Φ ⊢ A1 ≡ A2

ϕ; Φ ⊢ B1 ⊑ B2
ϕ; Φ ⊢ B2 ⊑ B1

ϕ; Φ ⊢ B1 ≡ B2

SubV
ϕ; Φ; Γ′ ⊢vK1

v : A1 ϕ; Φ ⊢ A1 ⊑ A2

ϕ; Φ ⊢ Γ ⊑ Γ′ ϕ; Φ ⊨ K1 ≤ K2

ϕ; Φ; Γ ⊢vK2
v : A2

SubC
ϕ; Φ; Γ′ ⊢cK1

t : B1 ϕ; Φ ⊢ B1 ⊑ B2

ϕ; Φ ⊢ Γ ⊑ Γ′ ϕ; Φ ⊨ K1 ≤ K2

ϕ; Φ; Γ ⊢cK2
t : B2

Const
ϕ; Φ; Γ ⊢v0 n : Nat[n]

Var
ϕ; Φ; Γ ⊢v0 x : Γ(x)

Lam
ϕ; Φ;x : A,Γ ⊢cM t : B

ϕ; Φ; Γ ⊢cM λx. t : A ⊸ B

App
ϕ; Φ;∆1 ⊢cK1

t : A ⊸ B

ϕ; Φ;∆2 ⊢vK2
v : A

ϕ; Φ;∆1 ⊎∆2 ⊢cK1+K2
t v : B

Fix
b, ϕ; b < H,Φ;x : [a < I] ·B1,∆ ⊢

c
J t : B2

a, b, ϕ; a < I, b < H,Φ ⊢ B2{1 + b+

(
a
△
c
I{1 + b+ c/b}

)
/b} ⊑ B1 ϕ; Φ ⊨ H ≡

1
△
b
I

ϕ; Φ;
∑
b<H

∆ ⊢cH .−1+
∑

b<H J µx. t : B2{0/b}

Succ
ϕ; Φ;∆1 ⊢vK1

v : Nat[J]
ϕ; Φ;x : Nat[1 + J] ,∆2 ⊢cK2

t : B

ϕ; Φ;∆1 ⊎∆2 ⊢cK1+K2
calcx← Succ(v) in t : B

Pred
ϕ; Φ;∆1 ⊢vK1

v : Nat[J]
ϕ; Φ;x : Nat[J .− 1] ,∆2 ⊢cK2

t : B

ϕ; Φ;∆1 ⊎∆2 ⊢cK1+K2
calcx← Pred(v) in t : B

Return
ϕ; Φ; Γ ⊢vK v : A

ϕ; Φ; Γ ⊢cK return v : FA

Bind
ϕ; Φ;∆1 ⊢cK1

t1 : FA ϕ; Φ;x : A,∆2 ⊢cK2
t2 : B

ϕ; Φ;∆1 ⊎∆2 ⊢cK1+K2
bindx← t1 in t2 : B

Thunk
a, ϕ; a < I,Φ;∆ ⊢cK t : B

ϕ; Φ;
∑
a<I

∆ ⊢vI+∑
a<I K thunk t : [a < I] ·B

Force
ϕ; Φ; Γ ⊢vK v : [a < 1] ·B

ϕ; Φ; Γ ⊢cK force v : B{0/a}

Figure 7.1: Subtyping and typing rules of dℓPCFpv

78 Call-by-push-value dℓPCFpv

For example, the type ([a < 1] ·Nat[0]) ⊸ Nat[0] is translated to ([a < 1] ·FNat[0]) ⊸
FNat[0]. That is, the argument is a thunk which, after being thunked, will evaluate to
return 0 (or diverge).

Lemma 7.3 (Translation of subtypings). We can translate dℓPCFn subtypings to dℓPCFpv
subtypings:

• If ϕ; Φ ⊢ A ⊑ B, then ϕ; Φ ⊢ An ⊑ Bn.

• If ϕ; Φ ⊢ σ ⊑ τ , then ϕ; Φ ⊢ σn ⊑ τn.

Proof. By mutual induction over the subtypings of (modal/basic) types.

Lemma 7.4 (Translation and index substitution). Let θ be an index substitution. Then
(σθ)n = (σn)θ. The same holds for modal types.

Lemma 7.5 (Translation of dℓPCFn typings). Every dℓPCFn typing ϕ; Φ; Γ ⊢M t : ρ can
be translated into a dℓPCFpv typing ϕ; Φ; Γn ⊢cM tn : ρn.

Proof. By induction on the dℓPCFn typing. Subtypings are taken care of by Lemma 7.3.

• Case Var: t = x, Γ(x) = [a < I] · σ, σ{0/a} = ρ, and ϕ; Φ ⊨ 1 ≤ I:

ϕ; Φ; Γn ⊢vM x : Γn(x) = [a < I] · σn ϕ; Φ ⊨ 1 ≤ I

ϕ; Φ; Γn ⊢cM forcex : σn{0/a} = (σn){0/a}

• Case Const. We have t = k and ρ = Nat[k]. We can show ϕ; Φ; Γn ⊢cM return k :
FNat[k] with the dℓPCFpv rules Return and Const.

• Case Lam. The inductive hypothesis yields ϕ; Φ;x : An,∆n ⊢cM tn : σn. The goal
follows from the dℓPCFpv rule Lam.

• Case Fix. As above. Note that the λ and fixpoint rules of dℓPCFpv have exactly the
same shape and weights as their dℓPCFn counterparts.

• Case App. Using the inductive hypotheses, we can type:

ϕ; Φ; ∆n
1 ⊢cK1

tn1 : ([a < I] · σn) ⊸ τn

a, ϕ; a < I,Φ; ∆n
2 ⊢cK2

tn2 : σn

ϕ; Φ;
∑

a<I ∆n
2 ⊢vI+∑

a<I K2
thunk t2 : [a < I] · σn

ϕ; Φ; ∆1 ⊎
∑

a<I ∆n
2 ⊢cI+K1+

∑
a<I K2

tn1 (thunk tn2) : τn

• Case Ifz. Using the inductive hypotheses, we can type:

ϕ; Φ;∆n
1 ⊢cK1

tn1 : FNat[I]

ϕ; Φ; z : Nat[I] ⊢v0 z : Nat[I] ϕ; 0 ≳ I resp. 0 < I,Φ;∆n
2 ⊢K2

tn2,3 : ρn

ϕ; Φ; z : Nat[I] ,∆n
2 ⊢cK2

ifz z then tn2 else t
n
3 : ρn

ϕ; Φ;∆n
1 ⊎∆n

2 ⊢cK1+K2
bind z ← tn1 in ifz z then t

n
2 else t

n
3 : ρn

Call-by-value translation 79

• Case Succ We derive the following typing:

ϕ; Φ; Γn ⊢cK tn : FNat[I]

ϕ; Φ;x : Nat[I] ⊢v0 x : Nat[I]

ϕ; Φ; y : Nat[1 + I] ⊢v0 y : Nat[1 + I]

ϕ; Φ; y : Nat[1 + I] ⊢c0 return y : FNat[1 + I]

ϕ; Φ;x : Nat[I] ⊢c0 calc y ← Succ(x) in return y : FNat[1 + I]

ϕ; Φ; Γn ⊢cK bindx← tn in calc y ← Succ(x) in return y : FNat[1 + I]

• Case Pred. As the above case.

7.4 Call-by-value translation

We show how to translate dℓPCFv typings into dℓPCFpv typings.

We translate dℓPCFv modal types (σ ::= [a < I]
∣∣Nat[I]) to dℓPCFpv values types, and

linear types (A ::= σ ⊸ τ) to computation types.

Definition 7.6 (Translation of dℓPCFv types).

([a < I] · σ)v := [a < I] · σv

Nat[I]v := Nat[I]

(σ ⊸ τ)v := σv ⊸ F τ v

dℓPCFv contexts (consisting of modal types) are pointwisely lifted to dℓPCFpv contexts
(consisting of value types).

For example, the type [a < 1] · (Nat[0] ⊸ Nat[0]) is translated to [a < 1] · (Nat[0] ⊸
FNat[0]).

Lemma 7.7 (Translation of subtypings). We can translate dℓPCFv subtypings to dℓPCFpv
subtypings:

• If ϕ; Φ ⊢ A ⊑ B, then ϕ; Φ ⊢ Av ⊑ Bv.

• If ϕ; Φ ⊢ σ ⊑ τ , then ϕ; Φ ⊢ σv ⊑ τ v.

Proof. By mutual induction over the (modal/linear) subtyping judgements.

Lemma 7.8 (Translation and index substitution). Let θ be an index substitution. Then
(σθ)v = (σv)θ. The same holds for linear types.

The following admissible typing rule will be important in the conversion of dℓPCFv to
dℓPCFpv typings below, and it will also be helpful in the soundness proof of dℓPCFpv. Note
that the rule looks similar to the the dℓPCFv rule Fix, but H is added to the weight.

80 Call-by-push-value dℓPCFpv

Lemma 7.9 (Admissible rule for thunkµx. t). The following rule is admissible:

ThunkFix
b, ϕ; b < H,Φ;x : [a < I] ·B1,∆ ⊢cJ t : B2

a, b, ϕ; a < I, b < H,Φ ⊢ B2{1 + b +

(
a
△
c
I{1 + b + c/b}

)
/b} ⊑ B1 ϕ; Φ ⊢ Γ ⊑

∑
b<H

∆

ϕ; Φ ⊨ H +
∑
b<H

J ≤M ϕ; Φ ⊢ [a < K] ·B2{
a
△
b
I/b} ⊑ A ϕ; Φ ⊨ H ≡

K
△
b
I

Φ; Γ ⊢vM thunkµx. t : A

Proof. We will first split the typing of t into K typings; then using the fixpoint rule, we
will build K typings for µx. t, which are finally thunked.

We define the following index terms:

M :=
c
△
b
I N :=

1
△
b
I{M + b/b}

Note that M and N both have the index variable c free. M stands for the sum of the
sizes of the first c trees in the forest; N denotes the size of the cth tree. We can prove the
following (in)equations:

ϕ; Φ ⊨ H ≡
K
△
b
≡

∑
c<K

N b, c, ϕ; c < K, b < N,Φ ⊨ M + b < H

Now we substitute M+b for b in the typing of t, and we weaken using the above inequation:

b, c, ϕ; c < K, b < N,Φ;x : [a < I{M + b/b}] ·B1{M + b/b},∆{M + b/b}
⊢cJ{M+b/b} t : B2{M + b/b} (7.1)

We also substitute M + b for b in the subtyping between B2 and B1:

a, b, c, ϕ; a < I{M + b/b}, c < K, b < N ⊢

B2{1 + b +

(
a
△
d
I{1 + b + d/b}

)
/b}{M + b/b} ⊑ B1{M + b/b} (7.2)

Note that we can rewrite the above substitution for B2:

B2{1 + b +

(
a
△
d
I{1 + b + d/b}

)
/b}{M + b/b}

= B2{M + 1 + b +

(
a
△
d
I{M + 1 + b + d/b}

)
/b}

= B2{M + b/b}{1 + b +

(
a
△
d
I{M + b/b}{1 + b + d/b}

)
/b}

Call-by-value translation 81

Using (7.1) and (7.2), we apply the rule Fix (with I := I{M + b/b} and H := N =
△1

b I{M + b/b}, Bi := Bi{M + b/b}, and J := J{M + b/b}):

c, ϕ; c < K,Φ;
∑
b<N

∆{M + b/b} ⊢cN .−1+
∑

b<N J{M+b/b} µx. t : B2{M + 0/b}

Now we apply the rule Thunk:

ϕ; Φ;
∑
c<K

∑
b<N

∆{M + b/b} ⊢cK+
∑

c<K(N .−1+
∑

b<N J{M+b/b})

thunkµx. t : [c < K] ·B2{M/b} = [a < K] ·B2{
a
△
b
I/b} ⊑ A

It can be shown that ϕ; Φ ⊢∑
b<K ∆ ≡∑

c<K

∑
b<N ∆{M + b/b}. Finally, we show that

the weight is correct:

ϕ; Φ ⊨ H +
∑
b<H

J ≡ K + (H .−K) +
∑
c<K

∑
b<N

J{M + b/b}

≡ K + (
∑
c<K

N .− 1) +
∑
c<K

∑
b<N

J{M + b/b}

≡ K +
∑
c<K

(N .− 1 +
∑
b<N

J{M + b/b})

We will later also show that this rule is invertible. For the call-by-value translation,
we need one more lemma:

Lemma 7.10 (Inversion of Thunk). Let ϕ; Φ; Γ ⊢vM thunk t : [a < 1] · B. Then there
exists an M ′ such that ϕ; Φ; Γ ⊢cM ′ t : B{0/a} and ϕ; Φ ⊨ 1 + M ′ ≤M .

Proof. By inverting the typing, we get:

ϕ; Φ ⊢ [a < I] ·B′ ⊑ [a < 1] ·B a, ϕ; a < I,Φ; ∆ ⊢cK t : B′

ϕ; Φ ⊨ I +
∑
a<I

K ≤M ϕ; Φ ⊢ Γ ⊑
∑
a<1

∆

We choose M ′ := K{0/a}. Inversion of the subtyping yields ϕ; Φ ⊢ 1 ≤ I and a, ϕ; a <
1,Φ ⊢ B′ ⊑ B. By substituting 0 for a in this subtyping and the typing of t, we get:

ϕ; Φ; Γ ⊑ ∆{0/a} ⊢K{0/a} t : B′{0/a} ⊑ B{0/a}

Lemma 7.11 (Translation of dℓPCFv typings). We can translate dℓPCFv typings of values
v and any terms t.

• Every dℓPCFv value typing ϕ; Φ; Γ ⊢K v : ρ can be translated into a dℓPCFpv value
typing ϕ; Φ; Γv ⊢vK vval : ρv.

82 Call-by-push-value dℓPCFpv

• Every dℓPCFv term typing ϕ; Φ; Γ ⊢K t : ρ can be translated into a dℓPCFpv compu-
tation typing ϕ; Φ; Γv ⊢cK tv : F ρv.

Proof. By mutual induction on the dℓPCFv typings (with subtypings taken care of by
Lemma 7.7). We first consider the value cases.

• Case Const: The goal follows from the corresponding dℓPCFpv rule.

• Case Lam. We apply the rules Lam and Thunk to the inductive hypothesis:

a, ϕ; a < I,Φ;x : σv,∆v ⊢cJ tv : F τ v

a, ϕ; a < I,Φ; ∆v ⊢cJ λx. tv : σv ⊸ F τ v

ϕ; Φ;
∑

a<I ∆v ⊢vI+∑
a<I J

thunkλx. tv : [a < I] · (σv ⊸ F τ v)

• Case Fix. We have the following:

b, ϕ; b < H,Φ; f : [a < I] ·Av,∆v ⊢vJ thunkλx. tv : [a < 1] ·Bv

a, b, ϕ; a < I, b < H,Φ ⊢ Bv{0/a, 1 + b +

(
a
△
d
I{1 + b + d/b}

)
/b} ⊑ Av

with ϕ; Φ ⊨ H ≡ △K
b I, ρ = [a < K] · B{0/a,△a

b I/b}, Γ =
∑

b<K ∆, and the total
weight is

∑
b<H J . First we invert the thunk typing (using Lemma 7.10) and get:

b, ϕ; b < H,Φ; f : [a < I] ·Av,∆v ⊢cJ ′ λx. tv : Bv{0/a}

with an index term J ′ such that b, ϕ; b < H,Φ ⊨ 1 + J ′ ≤ J .

Now, we apply the admissible rule ThunkFix (Lemma 7.9), and we get:

ϕ; Φ;
∑
b<H

∆v ⊢vH+
∑

b<H J ′ thunkµf. λx. t
v : [a < K] ·Bv{0/a,

a
△
b
I/b}

We are done now, since ϕ; Φ ⊨ H +
∑

b<H J ′ ≡∑
b<H(1 + J ′) ≤∑

b<H J .

Now we consider the computation cases:

• Case t = v (special case where t is a value). We use the inductive hypothesis and
the rule Return:

ϕ; Φ; Γv ⊢vK vval : ρv

ϕ; Φ; Γv ⊢cK return vval : F ρv

• Case App. Using the inductive hypotheses, we can type:

ϕ; Φ;∆
v
1 ⊢

c
K1

t
v
1 : F ([a < 1] · (σv ⊸ F τ

v
))

ϕ; Φ;∆
v
2 ⊢

c
K2

t
v
2 : Fσ

v{0/a}

ϕ; Φ; x : · · · ⊢c0 force x : (σv ⊸ F τv){0/a} ϕ; Φ; y : · · · ⊢v0 y : σv{0/a}

ϕ; Φ; x : [a < 1] · (σv ⊸ F τv), y : σv{0/a} ⊢c0 (force x) y : F τv{0/a}

ϕ; Φ;∆v
1 ⊎∆v

2 ⊢
c
K1+K2

bind x← tv1, y ← tv2 in (force x) y : F τv{0/a}

• Cases Ifz, Succ, and Pred: As in Lemma 7.5.

• Case Var: The goal follows from the dℓPCFpv rules Return and Var.

Soundness of dℓPCFpv 83

7.5 Soundness of dℓPCFpv

The proof of soundness of dℓPCFpv is very similar to that of dℓPCFv. We will prove subject
reduction; the weight decreases after every forcing step (i.e. force thunk t ≻1 t). First we
show that we can split value typings.

Lemma 7.12 (Splitting). Let ϕ; Φ; ∅ ⊢vM v : A1⊎A2 for a closed value v. Then ϕ; Φ; ∅ ⊢vN1

v : A1 and ϕ; Φ; ∅ ⊢vN2
v : A2 for index terms N1 and N2 with ϕ; Φ ⊨ N1 + N2 ≤M .

Proof. By case analysis on the value typing.

• Case v = k. Then Ai = Nat[Ii] for some I with ϕ; Φ ⊨ k = I1 = I2. Then we can
type k twice as Nat[I1], and Nat[I1] ⊎ Nat[I1] = Nat[I1].

• Case v = thunk t; the typing has the following shape:

a, ϕ; a < I,Φ; ∅ ⊢cK t : B
ϕ; Φ ⊢ [a < I] ·B ⊑ A1 ⊎A2 ϕ; Φ ⊨ I +

∑
a<I K ≤M

ϕ; Φ; ∅ ⊢vM thunk t : A1 ⊎A2

By definition of ⊎, A1 and A2 must have the following shape:

A1 = [a < I1] ·B′
A2 = [a < I2] ·B′{I1 + a/a}

A1 ⊎A2 = [a < I1 + I2] ·B′

Because ϕ; Φ ⊢ [a < I]·B ⊑ A1⊎A2, we have ϕ; Φ ⊨ I1+I2 ≤ I and a, ϕ; a < I1+I2 ⊢
B ⊑ B′. Now we define N1 := I1 +

∑
a<I1

K and N2 := I2 +
∑

a<I2
K{I1 + a/a}.

Then it obviously holds that ϕ; Φ ⊨ N1 + N2 ≤ M . Because a < I1 implies a < I,
we can derive the first typing using subsumption:

a, ϕ; a < I1,Φ; ∅ ⊢cK t : B ϕ; Φ ⊢ [a < I1] ·B ⊑ [a < I1] ·B′ = A1

ϕ; Φ ⊢vN1
thunk t : A1

The second typing is derived by substituting I1 + a for a:

a, ϕ; a < I2,Φ; ∅ ⊢cK{I1+a/a} t : B{I1 + a/a}
ϕ; Φ ⊢ [a < I2] ·B{I1 + a/a} ⊑ [a < I2] ·B′{I1 + a/a} = A2

ϕ; Φ ⊢vN2
thunk t : A2

Note that it already pays off here that we use CBPV here; in the corresponding dℓPCFv
proof, we also need to consider the fixpoint case, which requires splitting recursion forests
into two forests. Here, the only non-trivial case is thunk, which is similar to the λ case in
dℓPCFv.

Next, we also need to split value typings of bounded modal sums:

84 Call-by-push-value dℓPCFpv

Lemma 7.13 (Parametric splitting). Let ϕ; Φ; ∅ ⊢vM v :
∑

c<J A. Then exists an index
term N (with c as a free variable) such that c, ϕ; c < J,Φ; ∅ ⊢vN v : A and ϕ; Φ ⊨

∑
c<J N ≤

M .

Proof. Again, by case analysis on v; the only interesting case is v = thunk t. Inverting the
value typing of thunk t :

∑
c<J A yields:

a, ϕ; a < I,Φ; ∅ ⊢cK t : B ϕ; Φ ⊢ [a < I] ·B ⊑∑
c<J A ϕ; Φ ⊨ I +

∑
a<I K ≤M

By definition of bounded sum, we have:

A = [b < L] ·B′{b +
∑

d<c L{d/c}/a}∑
c<J A = [a <

∑
c<J L] ·B′

Note that c is free in A; L is the size of the cth ‘component’ of the sum.

Now, we split M into J parts: N := L +
∑

b<LK{b +
∑

d<c L{d/c}/a}, and we show:

ϕ; Φ ⊨
∑
c<J

N ≤
∑
c<J

L +
∑
c<J

∑
b<L

K{b +
∑
d<c

L{d/c}/a}

≤ I +
∑

a<
∑

c<J L

K ≤ I +
∑
a<I

K ≤M

Finally, we apply the substituting θ := {b +
∑

b<c L{d/c}/a} to the typing of t:

a, c, ϕ; a < L, c < J,Φ; ∅ ⊢cKθ t : Bθ c, ϕ; c < J,Φ ⊢ [a < L] ·Bθ ⊑ [a < L] ·B′θ = A

c, ϕ; c < J,Φ ⊢vN thunk t : A

Using (parametric) splitting, it is easy to show that substitution of a value preserves
typings. However, note that we have two substitution lemmas: one for value typings and
one for computation typings. In both cases, we substitute a value for a variable – either
in a value term or in a computation term.

Lemma 7.14 (Substitution). Let ϕ; Φ; ∅ ⊢vM2
v : Ax. Then:

• If ϕ; Φ;x : Ax,Γ ⊢cM1
t : B, then ϕ; Φ; Γ ⊢cM1+M2

t{v/x} : B.

• If ϕ; Φ;x : Ax,Γ ⊢vM1
u : A, then ϕ; Φ; Γ ⊢vM1+M2

u{v/x} : A.

Proof. By mutual induction on the typing of t or u.

• Case t u (where u is a value). We have:

ϕ; Φ;x : A1,∆1 ⊢cK1
t : A ⊸ B ϕ; Φ;x : A2,∆2 ⊢vK2

u : A

ϕ; Φ ⊨ K1 + K2 ≤M1 ϕ; Φ ⊢ x : Ax,Γ ⊑ (x : A1,∆1) ⊎ (x : A2,∆2)

Soundness of dℓPCFpv 85

Using the splitting lemma (Lemma 7.12), we obtain two typings of v:

ϕ; Φ; ∅ ⊢vM21
v : A1 ϕ; Φ; ∅ ⊢vM22

v : A2 ϕ; Φ ⊨ M21 + M22 ≤M2

Using the inductive hypotheses, we type:

ϕ; Φ; ∆′1 ⊢cK1+M21
t{v/x} : A ⊸ B ϕ; Φ; ∆′2 ⊢vK2+M22

u{v/x} : A
ϕ; Φ ⊢ Γ ⊑ ∆′1 ⊎∆′2 ϕ; Φ ⊨ (K1 + M21) + (K2 + M22) ≤M1 + M2

ϕ; Φ; Γ ⊢M1+M2 (t u){v/x} : B

• Case u = thunk t. We have:

a, ϕ; a < I,Φ;x : A,∆ ⊢cK t : B ϕ; Φ ⊢ x : Ax,Γ ⊑
∑

a<I(x : A,∆)

ϕ; Φ ⊨ I +
∑

a<I K ≤M1 ϕ; Φ ⊢ [a < I] ·B ⊑ A

Using parametric splitting (Lemma 7.13), we get:

a, ϕ; a < I,Φ; ∅ ⊢vM ′2 v : A ϕ; Φ ⊨
∑

a<I M
′
2 ≤M2

We arrive at the goal by using the inductive hypothesis and Thunk.

• Case t = bind y ← t1 in t2, where x ̸= y. We have:

ϕ; Φ;x : A1,∆1 ⊢cK1
t1 : FA ϕ; Φ; y : A, x : A2,∆2 ⊢cK2

t2 : B

As in the application case, we use splitting and the inductive hypotheses to derive:

ϕ; Φ; ∆1 ⊢cK1+M21
t1{v/x} : FA ϕ; Φ; y : A,∆2 ⊢cK2+M22

t2{v/x} : B

ϕ; Φ; Γ ⊢M1+M2 bind y ← t1{v/x} in t2{v/x} : B

• The cases constant, variable and ifz are similar to the corresponding cases in dℓPCFv
(see Lemma 5.8). The remaining cases (Succ, Pred, force, return, and µ) are also
similar.

Now we can prove subject reduction. In the following, we show the interesting cases
as lemmas. First, we show that a force step reduces the weight by one.

Lemma 7.15 (Subject reduction, case thunk). Let ϕ; Φ; ∅ ⊢cM force thunk t : B. Then
ϕ; Φ; ∅ ⊢cM ′ t : B with ϕ; Φ ⊨ 1 + M ′ ≤M .

Proof. By inversion of the force typing, we get: ϕ; Φ; ∅ ⊢cM thunk t : [a < 1] · B′ such
that ϕ; Φ ⊢ B′{0/a} ≡ B. Now, using Lemma 7.10, we get ϕ; Φ; ∅ ⊢cM ′ t : B′{0/a} with
ϕ; Φ ⊨ 1 + M ′ ≤M .

Lemma 7.16 (Subject reduction, case λ-application). Let ϕ; Φ; ∅ ⊢cM (λx. t) v : B. Then
ϕ; Φ; ∅ ⊢cM t{v/x} : B.

86 Call-by-push-value dℓPCFpv

Proof. By inversion, we get:

ϕ; Φ;x : A ⊢cM1
t : B ϕ; Φ; ∅ ⊢vM2

v : A ϕ; Φ ⊨ M1 + M2 ≤M

The goal follows from substitution (Lemma 7.14).

The cases for the steps of terms like ifz 0 then t1 else t2 and calcx← Succ(n) in t can be
shown similarly. In fact, these cases are similar to their counterparts in dℓPCFv. The only
non-trivial case is the fixpoint case:

Lemma 7.17 (Subject reduction, case fixpoint unrolling). Let ϕ; Φ; ∅ ⊢cM µx. t : B. Then
ϕ; Φ; ∅ ⊢cM t{thunkµx. t/x} : B.

Proof. We first invert the typing of µx. t:

b, ϕ; b < H,Φ;x : [a < I] ·B1 ⊢cJ t : B2 (7.3)

a, b, ϕ; a < I, b < H,Φ ⊢ B2{1 + b +

(
a
△
c
I{1 + b + c/b}

)
/b} ⊑ B1 (7.4)

ϕ; Φ ⊨ H ≡
1
△
b
I ϕ; Φ ⊢ B2{0/b} ⊑ B ϕ; Φ ⊨ (H .− 1) +

∑
b<H J ≤M

Now we substitute 0 for b in (7.3):

ϕ; Φ;x : [a < I{0/b}] ·B1{0/b} ⊢cJ{0/b} t : B2{0/b}

Remember that I describes the recursion tree. This means that I{0/b} is the number of
children of the root – this is the number how often x is forced (and usually recursively
called) at the first application of t{thunkµx. t/x}. The type [a < I] ·B1{0/b} is the type
that x is expected to have at the root. This means that we are done (using Lemma 7.14),
if we can type:

ϕ; Φ; ∅ ⊢M∗ thunkµx. t : [a < I{0/b}] ·B1{0/b} (7.5)

with an M∗ such that ϕ; Φ ⊨ J{0/b}+ M∗ ≤M .
We define the following index terms and types:

K∗ := I{0/b} I∗ := I{1 + b/b} H∗ := △K∗
b I∗ = H .− 1 B∗1,2 := B1,2{1 + b/b}

J∗ := J{1 + b/b} M∗ := H∗ +
∑

b<H∗ J
∗

By substituting 1 + b for b in (7.3) and (7.4), we get:

b, ϕ; b < H∗,Φ;x : [a < I∗] ·B∗1 ⊢cJ∗ t : B∗2

a, b, ϕ; a < I∗, b < H∗,Φ ⊢ B2{1 + b +

(
a
△
c
I{1 + b + c/b}

)
/b}{1 + b/b} ⊑ B∗1

The above substitution of B2 can be rewritten:

B2{1 + b +

(
a
△
c
I{1 + b + c/b}

)
/b}{1 + b/b} = B∗2{1 + b +

(
a
△
c
I∗{1 + b + c/b}

)
/b}

Soundness of dℓPCFpv 87

Now, using ThunkFix (Lemma 7.9), the only obligation left to show (7.5) is:

a, ϕ; a < I{0/b},Φ ⊢ B∗2{
a
△
b
I∗/b} = B2{1 + 0 +

a
△
c
I{1 + 0 + c/b} ⊑ B1{0/b}

This subtyping follows from (7.4) by substituting 0 for b.

Finally, we have to show that the overall weight is correct:

ϕ; Φ ⊨ J{0/b}+ M∗ = H∗ + J{0/b}+
∑
b<H∗

J∗ ≡ (H .− 1) + J{0/b}+
∑

b<H−1
J{1 + b/b}

≡ (H .− 1) +
∑
b<H

J ≤M

All together, we are ready to prove subject reduction.

Theorem 7.18 (Subject reduction of dℓPCFpv). Let ϕ; Φ; ∅ ⊢cM t : B, and let t ≻i t
′ be a

step. Then there exists an M ′ such that ϕ; Φ; ∅ ⊢M ′ t′ : ρ and ϕ; Φ ⊨ i + M ′ ≤M .

Proof. By induction on the small step. The context reduction cases are trivial. The
interesting head reduction cases are the Lemmas 7.15 to 7.17. The other head reduction
cases are trivial.

We prove soundness of dℓPCFpv as we did for dℓPCFv. Therefore, we first define a size
function on computations.

Definition 7.19 (Size of a computation term).

λx. t	:= 1 +	t		bindx← t1 in t2	:= 1 +	t1	+	t2
µx. t	:= 1 +	t		calcx← Succ(v) in t	:= 1 +	t		
t v	:= 1 +	t		calcx← Pred(v) in t	:= 1 +	t		

|force v| := |return v| := 1 |ifz v then t1 else t2| := 1 + |t1|+ |t2|

Note that the size of a computation does not change if we substitute a value for a
variable. This is crucial in the β-substitution steps (i.e. (λx. t) v ≻0 t{v/x} and µx. t ≻0

t{thunkµx. t/x}), which (in contrast to dℓPCFv) do not decrement the weight.

Corollary 7.20 (Soundness of dℓPCFpv). Let ∅; ∅; ∅ ⊢ck t : B. Then there exists a terminal
computation T and a number k′, such that t ⇓k′ T and ∅; ∅; ∅ ⊢ck−k′ T : B.

Proof. We prove the lemma by well-founded induction on the lexicographical order of k
and the size of t. If t is a terminal computation (that is, t = return v or t = λx. t′), we are
done. Otherwise, let t ≻i t

′ be the first step of t. Using Theorem 7.18, we get a k′ such
that ∅; ∅ ⊨ k′ + i ≤ k and ∅; ∅; ∅ ⊢ck′ t′ : τ . Now, we do a case distinction on the cost i of
the step. If i = 1 (i.e. the step was a forcing step), we can apply the inductive hypothesis
on t′ since k′ − i < k. Otherwise (i = 0), we know that the size of t′ is smaller than the
size of t, so we can also apply the inductive hypothesis on t′.

88 Call-by-push-value dℓPCFpv

Corollary 7.21 (Soundness of dℓPCFpv programs). Let ∅; ∅; ∅ ⊢ck t : FNat[n]. Then there
is a k′ ≤ k such that t ⇓k′ returnn.
Proof. By the above theorem, t evaluates to a term t′ of type FNat[n] in k′ ≤ k steps.
Because this term is a closed terminal computation, it must be equal to returnn.

We can of course derive the same soundness corollaries for dℓPCFpv precise typings, as
for dℓPCFv (see Section 5.4):

Theorem 7.22 (Precise subject reduction of dℓPCFpv). Let ϕ; Φ; ∅ ⊢M t : ρ be a precise
typing, and let t ≻i t

′ be a step. Then there exists an index term M ′ such that ϕ; Φ; ∅ ⊢M ′
t′ : ρ and ϕ; Φ ⊨ i + M ′ ≡M .

Corollary 7.23 (Precise soundness of dℓPCFpv). Let ∅; ∅; ∅ ⊢cK t : B be a precise typing
and t ⇓k T . Then ∅; ∅; ∅ ⊢cK .−k T : B is a precise typing.

Corollary 7.24 (Precise soundness of dℓPCFpv). Let ∅; ∅; ∅ ⊢cK t : B be a precise typing
and t ⇓k T , and let B be disposable. Then ⊨ K ≡ k and ∅; ∅; ∅ ⊢c0 T : B.

Corollary 7.25 (Precise soundness of dℓPCFpv for programs). Theorem 4.5 (2) holds for
dℓPCFpv: Let ∅; ∅; ∅ ⊢cK t : FNat[I] be a precise typing and t ⇓k returnn. Then ⊨ K ≡ k
and ⊨ I ≡ n.

7.5.1 Deriving soundness of dℓPCFn and dℓPCFv

We already have everything we need to derive soundness of dℓPCFn and dℓPCFv from
soundness of dℓPCFpv. We have already proved soundness of dℓPCFv, but it is possible to
derive the result from dℓPCFpv.

Corollary 7.26 (Soundness of dℓPCFv programs). Let ∅; ∅; ∅ ⊢k t : Nat[n]. Then there is
a k′ ≤ k such that t ⇓k′ n – i.e. t does k′ β-substitution steps in the CBV semantics.

Proof. First, we translate the dℓPCFv typing to a dℓPCFpv typing using Lemma 7.11:

∅; ∅; ∅ ⊢ck t : FNat[n]

By soundness of dℓPCFpv (Corollary 7.21), we have that tv ⇓k′ returnn – i.e. tv needs
k′ ≤ k forcing steps in the CBPV semantics. Using Lemma 2.23, we have that t ⇓k′ n.

Corollary 7.27 (Soundness of dℓPCFn programs). Let ∅; ∅; ∅ ⊢k t : Nat[n]. Then there is
a k′ ≤ k such that t ⇓k′ n – i.e., in the environment semantics, t evaluates to n after k′

variable lookups.

Proof. First, we translate the dℓPCFn typing to a dℓPCFpv typing using Lemma 7.5:

∅; ∅; ∅ ⊢ck t : FNat[n]

By soundness of dℓPCFpv (Corollary 7.21), we have that tn ⇓k′ returnn – i.e. tn needs
k′ ≤ k forcing steps in the CBPV semantics. This big-step execution can be translated
into an environment big-step execution ⟨tn; ∅⟩ ⇓k′ tc with unf (tc) = returnn. Using
Lemma 2.16, we have that ⟨t; ∅⟩ ⇓k′ tcCBN and tcnCBN = tc, and thus unf (tcCBN) = n.
Thus, by definition, t ⇓k′ n.

Completeness of dℓPCFpv 89

7.6 Completeness of dℓPCFpv

The dℓPCFpv completeness proof also follows the same structure as in the call-by-value
case in Section 5.5. The proofs of the joining lemmas are simpler since we do not need to
join recursion trees.

7.6.1 Preliminaries

We first define precise typings with skeletons; we write ϕ; Φ; Γ ⊢cK t : A@cs (and ϕ; Φ; Γ ⊢vK
v : A @ vs) for precise computation (or value) typings that have the skeleton cs (or vs),
respectively. Recall that a typing is precise if only bi-directional subtyping (≡) is allowed
and the weight may not be increased.1 Additionally, only disposable types (e.g. Nat[I] and
[a < 0] ·B) are allowed in contexts of closed programs.

Binary and bounded sums of value typings can be constructed in exactly the same
way as in the call-by-value case, since the syntax of dℓPCFv modal types is similar to the
syntax of dℓPCFpv value types.

As in Section 5.5.1, we have to define skeletons for simple CBPV typings.

Definition 7.28 (CBPV skeletons). Computation and value skeletons are labelled trees,
where each node is labelled with the name of the corresponding CBPV simple typing rule.
For the rule App, we additionally store the CBPV value type A.

Value skel.: vs ::= Var
∣∣ Const ∣∣ Thunk cs

Comp. skel.: cs ::= Lam cs
∣∣ Fix cs ∣∣ AppA cs vs

∣∣ Ifz vs cs1 cs2 ∣∣ Return vs∣∣ Bind cs1 cs2 ∣∣ Force vs ∣∣ Succ vs cs ∣∣ Pred vs cs
A simple CBPV typing can be assigned a skeleton by ignoring the contexts. Again, it

can be shown that two simple CBPV typing derivations for Γ ⊢c t : B are equal if and
only if their skeletons are equal. It is also possible to define subject reduction on CBPV
computation skeletons: (t; cs) ≻i (t′; cs ′). This is completely analogous to the CBV case
in Section 5.5.1.

7.6.2 Converse substitution

In order to prove converse substitution, we first prove the joining lemmas. We use the
same technique as for dℓPCFv.

Lemma 7.29 (Case distinction typing lemma). Let C be a constraint. Let Φi; Γi ⊢cMi
t :

Bi@cs be two computation typings (i = 1, 2). Assume that the CBPV structures of Bi and
Γi(x) (for all variables x in the domain of Γ1 and Γ2) are equal. Then we can construct
a typing for:

if C thenΦ1 elseΦ2; if C thenΓ1 elseΓ2 ⊢if C thenM1 elseM2 t : if C thenB1 elseB2 @ cs

The same holds for subtyping and value typings.

1In particular, it is not allowed to weaken a finite weight to the undefined/infinite weight ⊥.

90 Call-by-push-value dℓPCFpv

Again, this lemma is refined to make it useful for the binary joining lemma:

Corollary 7.30 (Refined case distinction typing lemma). Let a, ϕ; a < I1,Φ; Γ1 ⊢cM1
t :

B @ cs and a, ϕ; a < I2,Φ; Γ2 ⊢cM2
t : B{a + I1/a}@ cs. Then:

a, ϕ; a < I1 + I2,Φ; if a < I1 thenΓ1 elseΓ2{a− I1/a} ⊢cif a<I1 thenM1 elseM2{a−I1/a} t : B @ cs

Lemma 7.31 (Joining). Let v be a closed value. Given two value typings ϕ; Φ; ∅ ⊢vMi
v :

Ai @ vs with the same skeleton (i = 1, 2), we can derive value types A = A′1 ⊎ A′2 with
ϕ; Φ ⊢ A′i ≡ Ai, and derive a typing ϕ; Φ; ∅ ⊢M1+M2 v : A @ vs.

Proof (sketch). If v = n, then A = Nat[Ii] with ϕ; Φ; ∅ ⊨ I1 = I2. Let A := Nat[I1] =
Nat[I1] ⊎ Nat[I1]. We can again type ϕ; Φ; ∅ ⊢v0 n : A.

Let us now examine the interesting case, v = thunk t. We invert both typings (i = 1, 2):

a, ϕ; a < Ii,Φ; ∅ ⊢cKi
t : B

ϕ; Φ; ∅ ⊢vMi:=Ii+
∑

a<Ii
Ki

thunk t : Ai = [a < Ii] ·Bi

The goal follows from Corollary 7.30 and the rule Thunk.

Lemma 7.32 (Parametric joining). Let c, ϕ; c < L,Φ; ∅ ⊢cM v : A @ vs. Then there exists
an A′ with ϕ; Φ ⊢ A′ ≡ A and ϕ; Φ; ∅ ⊢v∑

a<I M
v :

∑
c<LA′ @ vs.

Proof (sketch). The value v could be a constant (in which case the proof is trivial) or
v = thunk t. By inverting the typing of thunk t, we get:

a, c, ϕ; a < I, c < L,Φ; ∅ ⊢cK t : B A = [a < I] ·B M = I +
∑

c<LK

Exactly as in theLam case of the proof of Lemma 5.44 (see Appendix A.1.1), we construct
the sum over A, using the function findSlotc LI.

Lemma 7.33 (Converse substitution). Let v be a closed CBPV value. Assume simple
CBPV typings x : Âx, (|Γ|) ⊢c t : (|B|)@s1 and ∅ ⊢v v : Âx@s2 for a closed value v. Further-
more, assume a dℓPCFpv typing ϕ; Φ; Γ ⊢cM t{v/x} : B @ s′, where s′ = subst(x; t; s1; s2).
Then there exist index terms N1 and N2, and a value type A, such that:

ϕ; Φ;x : A,Γ ⊢cN1
t : B@s1 ϕ; Φ; ∅ ⊢vN2

v : A@s2 ϕ; Φ ⊨ N1 +N2 ≡M (|A|) = Âx

The same holds for values u instead of computations t.

Proof (sketch). This is proved in the same way as Lemma 5.45.

Completeness of dℓPCFpv 91

7.6.3 Subject expansion

Lemma 7.34 (Subject expansion of dℓPCFpv). Let (t; cs) ≻i (t′; cs ′). Assume a CBPV
typing ∅ ⊢c t : (|B|) @ sc, and a dℓPCFpv typing ϕ; Φ; ∅ ⊢cM t′ : B @ sc′. Then we can type
ϕ; Φ; ∅ ⊢ci+M t : B @ sc.

Proof. Induction on the small-step semantics. The only non-trivial head reduction steps
are the following:

• (λx. t) v ≻0 t{v/x}: Lemma 7.35.

• µx. t ≻0 t{thunkµx. t/x}: Lemma 7.37.

• force thunk t ≻1 t: By applying the rules Thunk and Force (which increases the
weight by one).

Lemma 7.35 (Subject expansion (application case)). Let ∅ ⊢c (λx. t) v : (|B|) @ cs be
a simple CBPV typing and let cs ′ be the successor skeleton of this typing. Assume the
dℓPCFpv typing ϕ; Φ; ∅ ⊢M t{v/x} : B@cs ′. Then we can type ϕ; Φ; ∅ ⊢M (λx. t) v : B@cs.

Proof. By inverting the simple CBPV typing, we get:

∅ ⊢c λx. t : Â→ (|B|) @ s1 ∅ ⊢v v : Â @ s2

We have cs = App Â s1 s2, and thus cs ′ = subst(x; t; s1; s2). Using converse substitution
(Lemma 7.33) on the typing of t{v/x}, we get:

ϕ; Φ;x : A ⊢cN1
t : B ϕ; Φ; ∅ ⊢vN2

v : A ϕ; Φ ⊨ N1 + N2 = M (|A|) = Â

Thus, we can type (λx. t) v using the rules App and Lam.

For the fixpoint unrolling case of subject expansion, we have to prove that the admiss-
ible typing rule ThunkFix in Lemma 7.9 is invertible.

Lemma 7.36 (Inversion of ThunkFix). Assume a dℓPCFpv typing ϕ; Φ; Γ ⊢vM thunkµx. t :
A @ s. Then there exist types B1, B2, and index terms I, K, H, such that we can derive:

b, ϕ; b < H,Φ;x : [a < I] ·B1,∆ ⊢
c
J t : B2 @ s′

a, b, ϕ; a < I, b < H,Φ ⊢ B2{1 + b+

(
a

△
d
I{1 + b+ d/b}

)
/b} ⊑ B1

ϕ; Φ ⊢ [a < K]·B2{
a

△
b
I/b} ⊑ A ϕ; Φ ⊢ Γ ⊑

∑
b<H ∆ ϕ; Φ ⊨ H+

∑
b<H J ≤M ϕ; Φ ⊨ H ≡ △K

b I

with s = Thunk (Fix s′). (Furthermore, if the dℓPCFpv typing was precise, we have ≡
instead of ⊑ or ≤)
Proof. We first invert the typing of thunk:

c, ϕ; c < K,Φ; ∆′ ⊢cM ′ µx. t : B ϕ; Φ ⊢ [c < K] ·B ⊑ A

ϕ; Φ ⊨ K +
∑
c<K

M ′ ≤M ϕ; Φ ⊢ Γ ⊑
∑
c<K

∆′

92 Call-by-push-value dℓPCFpv

The K is already the K we need to provide in the lemma. We further invert the typing
of µx. t:

b, c, ϕ; b < H∗, c < K,Φ;x : [a < I∗] ·B∗1,∆′′ ⊢cJ∗ t : B∗2

a, b, c, ϕ; a < I∗, b < H∗, c < K,Φ ⊢ B∗2{1 + b +

(
a
△
d
I∗{1 + b + d/b}

)
/b} ⊑ B∗1

c, ϕ; c < K,Φ ⊢ B∗2{0/b} ⊑ B c, ϕ; c < K,Φ ⊨ H∗ ≡
1
△
b
I∗

c, ϕ; c < K,Φ ⊨ (H∗ .− 1) +
∑

b<H∗ J
∗ ≤M ′ c, ϕ; c < K,Φ ⊢ ∆′ ⊑∑

b<H∗ ∆′′

Note that I∗ has c as a free variable; for c < K, it describes a recursion tree of size H∗.
Using the function g−1 := findSlotcKH, we define the two inverting substitutions:

θ := {b +
∑
d<c

H{d/c}/b} θ∗ := {π1(g−1(b))/c, π2(g−1(b))/b}

The joined forest I := I∗θ∗ consists of K trees and has size H :=
∑

c<K H∗. Similarly,
choose A := A∗θ∗, B1 := B∗1θ

∗, B2 := B∗2θ
∗, ∆ := ∆′′θ∗, and J := J∗θ∗.

By applying the substitution θ∗, we can type:

b, ϕ; b < H,Φ;x : [a < I] ·B1,∆ ⊢cJ t : B2

a, b, ϕ; a < I, b < H,Φ ⊢ B2{1 + b +

(
a
△
d
I{1 + b + d/b}

)
/b} ⊑ B1

There are only three remaining subtypings and inequations to show, which are all very
similar:

ϕ; Φ ⊢ [a < K] ·B2{
a
△
b
I/b} ≡ [a < K] ·B∗2θ∗{

∑
c<a

H/b}

≡ [a < K] ·B∗2{π1(g−1(
∑
c<a

H))/c, π2(g
−1(

∑
c<a

H))/b}

≡ [a < K] ·B∗2{a/c, 0/b} ⊑ [a < K] ·B{a/c} = [c < K] ·B ⊑ A

ϕ; Φ ⊢ Γ ⊑
∑
c<K

∆′ ⊑
∑
c<K

∑
b<H∗

∆′′ ⊑
∑
c<K

∑
b<H∗

∆′′θ∗θ ≡
∑

c<
∑

c<K H∗

∆′′θ∗ =
∑
b<H

∆

ϕ; Φ ⊨ H +
∑
b<H

J = K +
∑
b<K

H∗ .−K +
∑
c<K

∑
b<H∗

J∗ = K +
∑
c<K

(H∗ .−1+
∑
b<H∗

J∗) ≤M

With the above lemma, proving the fixpoint subject expansion is similar to Lemma A.9
in dℓPCFv.

Completeness of dℓPCFpv 93

Lemma 7.37 (Subject expansion (fixpoint case)). Let ∅ ⊢ µx. t : (|B|) @ Fix s be a simple
CBPV typing and let s′ = subst(x; t; s;Thunk (Fix s)) be the successor skeleton of this typ-
ing. Assume a dℓPCFpv typing ϕ; Φ; ∅ ⊢cM t{thunkµx. t/x} : B @ s′. Then we can type
ϕ; Φ; ∅ ⊢cM µx. t : B @ s.

Proof. By converse substitution (Lemma 7.33), we get a value typing for thunkµx. t:

ϕ; Φ;x : Aµ ⊢cN1
t : B @ s ϕ; Φ; ∅ ⊢vN2

thunkµx. t : Aµ @ Fix s ϕ; Φ ⊨ M = N1 + N2

By applying Lemma 7.36 on the (precise) typing of thunkµx. t, we get:

b, ϕ; b < H,Φ;x : [a < I] ·B1,∆ ⊢
c
J t : B2 @ s

a, b, ϕ; a < I, b < H,Φ ⊢ B2{1 + b+

(
a

△
d
I{1 + b+ d/b}

)
/b} ≡ B1

ϕ; Φ ⊢ [a < K] ·B2{
a

△
b
I/b} ≡ Aµ ϕ; Φ ⊢ Γ ≡

∑
b<H

∆ ϕ; Φ ⊨ H +
∑
b<H

J ≡M ϕ; Φ ⊨ H ≡
K

△
b
I

In order to type the computation µx. t with type B, we define a new recursion forest with
the cardinality H∗ := 1 + H by introducing a new root node with the K roots of I as
children. Similarly as in the proof of Lemma A.9, we define:

I∗ := ifz b thenK else I{1 + b/b} J∗ := ifz b thenN1 else J{1 + b/b}

B∗1 := ifz b thenB2{
a
△
b
I/b} elseB1{1 + b/b} B∗2 := ifz b thenB elseB2{1 + b/b}

We apply rule Fix with these parameters. The typing and the subtyping follow by case
distinction over b. The case b = 0 in the typing of b, ϕ; b < H∗,Φ;x : [a < I∗]·B∗1 ⊢J∗ t : B∗2
follows from the typing of t that we got by converse substitution. The cases where b > 0
follow by substituting 1 + b for b in the (sub)typings.

7.6.4 Completeness for programs

As a corollary of subject expansion, we can show that all computations that terminate in
returnn have type FNat[n].

Corollary 7.38 (Subject expansion, multiple steps). Let (t; s) ≻∗k (t′; s′), where k is the
number of forcing steps in this execution. Assume a CBPV typing ∅ ⊢c t : (|B|), and a
dℓPCFpv typing ϕ; Φ; ∅ ⊢cM t′ : ρ @ s′. Then ϕ; Φ; ∅ ⊢k+M t : B @ s.

Theorem 7.39 (Completeness for programs). All terminating CBPV programs (i.e. those
terminating computations of simple type FNat) can be typed with the type FNat[n], where
n is the result. The weight of the typing is exactly the number of forcing steps.

Proof. By assumption, we have ∅ ⊢c t : FNat. Since t is terminating (say, after k forcing
steps), it terminates to returnn for some n, which can be typed in dℓPCFpv: ∅; ∅; ∅ ⊢c0
returnn : FNat[n]. By the above corollary, we have ∅; ∅; ∅ ⊢ck t : FNat[n].

94 Call-by-push-value dℓPCFpv

7.6.5 Deriving completeness for dℓPCFn and dℓPCFv

In Sections 7.3 and 7.4, we have shown how to translate dℓPCFn and dℓPCFv typings to
dℓPCFpv typings. The shape of the translations can, of course, be computed from the
shape of the original PCF typing. It is not difficult to show that if a dℓPCFpv typing has
the right shape, it can be translated back to a dℓPCFn or dℓPCFv typing. This way, we
can derive completeness for dℓPCFn and dℓPCFv.

Our first step to convert (properly shaped) dℓPCFpv typings back to dℓPCFn typings
is to define what properly shaped means. Informally, it means that the dℓPCFpv has
the skeleton of a typing generated by Lemma 7.5. We formalise this using a translation
function ·n from PCF skeletons to CBPV skeletons.

Definition 7.40 (CBN skeleton translation).

Varn := Force Var

Constn := Const

(Lam s)n := Lam sn

(Fix s)n := Fix sn

(AppAs1 s2)
n := AppAn sn1 (Thunk sn2)

(Ifz s1 s2 s3)
n := Bind sn1 (Ifz Var sn2 s

n
3)

Recall that the function An maps (simple) PCF types to CBPV types, as defined in Defin-
ition 2.10.

Now we can prove the backtranslation theorem. Informally, it holds because the trans-
lation in Lemma 7.5 is invertible.

Lemma 7.41 (Backtranslation to dℓPCFn). Let ϕ; Φ; Γn ⊢cM tn : ρn @ sn be a dℓPCFpv
typing. Then we can type ϕ; Φ; Γ ⊢M t : ρ@s in dℓPCFn. (Moreover, if the dℓPCFpv typing
is precise, so is the generated dℓPCFn typing.)

Proof (sketch). By induction on the skeleton s and inversion of the dℓPCFpv typing.

• Case t = x. By inverting ϕ; Φ; Γn ⊢cM forcex : ρn, we get: ϕ; Φ ⊢ Γn(x) ⊑ [a < 1] · σ
with ϕ; Φ ⊢ σ{0/a} ⊑ ρn. Thus, there must be a dℓPCFn type σ′ such that σ′n = σ
and ϕ; Φ ⊢ σ′{0/a} ⊑ ρ. From that, it follows that ϕ; Φ; Γ ⊢M x : ρ.

• Case t = n. We have ρn = Nat[n′] = ρ with ϕ; Φ ⊨ n ⊑ n′, and thus also ϕ; Φ; Γ ⊢M
n : ρ.

• Case t = t1 t2. We invert the dℓPCFpv typing of tn = tn1 (thunk tn2), which has the
skeleton s = App Â s1 s2, where Â is a PCF type, and thus sn = App Ân sn1 (Thunk sn2).

ϕ; Φ; ∆1 ⊢cK1
tn1 : A ⊸ ρn @ sn1 ϕ; Φ; Γ2 ⊢vK2

thunk tn2 : A @ Thunk sn2

(|A|) = Ân ϕ; Φ ⊨ K1 + K2 ≤M ϕ; Φ ⊢ Γn ⊑ ∆1 ⊎ Γ2

Completeness of dℓPCFpv 95

We further invert the typing of thunk tn2:

a, ϕ; a < I,Φ; ∆2 ⊢cJ tn2 : B @ sn2 ϕ; Φ ⊢ [a < I] ·B ⊑ A

ϕ; Φ ⊨ I +
∑
a<I

J ≤ K2 ϕ; Φ ⊢ Γ2 ⊑
∑
a<I

∆2

We can define a dℓPCFn (basic) type σ such that σn = A.

Since ϕ; Φ ⊢ Γn ⊑ ∆1 ⊎ Γ2, we can define dℓPCFn contexts ∆′1 and Γ′2 such that
∆1 = ∆′1

n, Γ2 = Γ′2
n, and ϕ; Φ ⊢ Γ ⊑ ∆′1 ⊎ Γ′2. Similarly, we can define a ∆′2 such

that ∆2 = ∆′2
n and ϕ; Φ ⊢ Γ′2 ⊑

∑
a<I ∆′2.

Now we can apply the inductive hypotheses on the typings of t1 and t2, which yields:

ϕ; Φ; ∆′1 ⊢K1 t1 : σ ⊸ ρ @ s1 a, ϕ; a < I,Φ; ∆′2 ⊢J t2 : σ @ s2

ϕ; Φ; Γ ⊑ ∆′1 ⊎
∑

a<I ∆′2 ⊢K1+I+
∑

a<I J≤M t1 t2 : ρ @ App Â s1 s2

• Case t = λx. t′. We have ϕ; Φ;x : A,Γ ⊢cM tn : B with ϕ; Φ ⊢ A ⊸ B ⊑ ρn.
Therefore, we can define types A′ and σ such that A′n = A, σn = B and ϕ; Φ ⊢
A′ ⊸ σ ⊑ ρ. By the inductive hypothesis, we have ϕ; Φ;x : A′ ⊢M t : σ, and
therefore ϕ; Φ; Γ ⊢M λx. t : A′ ⊸ σ ⊑ ρ.

• Case t = µx. t′. As above.

• Case t = ifz t1 then t2 else t3.

We invert the typing of tn = bind z ← t1 in ifz z then t
n
2 else t

n
3:

ϕ; Φ;∆1 ⊢cK1
tn1 : FNat[I] @ sn1

ϕ; Φ ⊢ Nat[I] ⊑ Nat[I′]

ϕ; Φ; z : Nat[I] ⊢vK3
z : Nat[I′] @ Var

ϕ; 0 ≳ I′,Φ;∆2 ⊢K2
tn2 : ρn @ s2

ϕ; 0 < I′,Φ;∆2 ⊢K2 tn3 : ρn @ s3

ϕ; Φ; z : Nat[I] ,∆2 ⊢cK2
ifz z then tn2 else t

n
3 : ρn @ Ifz Var sn2 s

n
3

ϕ; Φ; Γ ⊢cM bind z ← tn1 in ifz z then t
n
2 else t

n
3 : ρn @ sn

(With ϕ; Φ ⊢ Γn ⊑ ∆1⊎∆2 and ϕ; Φ ⊨ K1+K2+K3 ≤M). Note that by inversion of
the typing of the temporary variable z, we get a I ′ such that ϕ; Φ ⊨ I ⊑ I ′. Moreover,
if the dℓPCFpv typing is precise, we have ϕ; Φ ⊨ K3 ≡ 0. Using the same technique
as in the above cases, we can define dℓPCFn contexts ∆′i such that ∆′i

n = ∆i and
ϕ; Φ ⊢ Γ ⊑ ∆′1 ⊎∆′2. Using the inductive hypotheses, we can now type:

ϕ; Φ;∆′1 ⊢K1
t1 : Nat[I′] @ s1 ϕ; 0 ≳ I′,Φ;∆′2 ⊢K2

t2 : ρ@ s2 ϕ; 0 < I′,Φ;∆′2 ⊢K2
t3 : ρ@ s3

ϕ; Φ; Γ ⊢M ifz t1 then t2 else t3 : ρ@ Ifz s1 s2 s3

• Cases t = calcx← Succ(v) in t′ and t = calcx← Pred(v) in t′: As above.

We can now prove completeness for dℓPCFn programs (Theorem 6.3).

96 Call-by-push-value dℓPCFpv

Proof. We assume a closure execution t ⇓k n and need to show ∅; ∅; ∅ ⊢k t : Nat[n]. Using
Lemma 2.17, we can translate the execution to the CBPV closure semantics: ⟨tn; ∅⟩ ⇓k tc
with unf (tc) = returnn. It can be shown that this closure execution can be converted to a
normal CBPV execution tn ⇓k returnn. Thus, using dℓPCFpv completeness (Theorem 7.39),
we have ∅; ∅; ∅ ⊢ck tn : FNat[n]. Since this is a typing of a translated term, this typing
must have the skeleton sn for some s. Using Lemma 7.41, we can translate the dℓPCFpv
typing to a dℓPCFn typing, and we get ∅; ∅; ∅ ⊢k t : Nat[n], as required.

We can do the same for dℓPCFv (although we have already proved completeness of
dℓPCFv in Section 5.5). We define two translations: for skeletons vs of dℓPCFv value
typings, and skeletons ts of dℓPCFv term typings.

Definition 7.42 (CBV skeleton translation).

Constval := Const

(Lam s)val := Thunk (Lam sv)

(Fix (Lam s))val := Thunk (Fix (Lam sv))

vsv := Return vsval

Varv := ReturnVar

(App τ s1 s2)
v := Bind sv1 (Bind sv2 (App τ v (ForceVar)Var))

(Ifz s1 s2 s3)
v := Bind (sv1) (Ifz Var sv2 sv3)

The function τn that maps (simple) PCF types to CBPV types is defined in Definition 2.20.

Lemma 7.43 (Backtranslation to dℓPCFv). Let ϕ; Φ; Γv ⊢vM vv : τ val @ sval be a dℓPCFpv
value typing. Then we can type ϕ; Φ; Γ ⊢M v : τ @ s. Also, if ϕ; Φ; Γv ⊢cM tv : F τ v @ sv,
then ϕ; Φ; Γ ⊢M t : τ @ s. (Moreover, if the dℓPCFpv typing is precise, so is the generated
dℓPCFv typing.)

Proof (sketch). Similarly to Lemma 7.41. For inverting the typing of (µfx. t)val = thunkµf.
λx. tv, we use Lemma 7.36.

7.7 Conjunctives and disjunctives

We have not considered products (conjunctives) and sums (disjunctives) of CBPV and
dℓPCFpv yet. In fact, there are two variants of products – multiplicative and additive
products – which behave like the products in CBV and CBN, respectively. Extending
dℓPCFpv with conjunctives and disjunctives is straightforward.

Multiplicative conjunctive (and unit) Values of the type A1 ⊗ A2 are similar to
pairs in the CBV version of PCF: They consist of two components, (v1; v2), and we can

Conjunctives and disjunctives 97

access both components using pattern-matching.

A ::= · · ·
∣∣ 1

∣∣A1 ⊗A2

v ::= · · ·
∣∣ ()

∣∣ (v1; v2)

t ::= · · ·
∣∣ let (x; y) := v in t

(In CBPV, we write × instead of ⊗.)

Since we introduced new value dℓPCFpv types, we also have to extend the definition
of (binary and bounded) modal sums. For the unit type, we simply define 1 ⊎ 1 := 1 and∑

a<I 1 := 1. Modal sums over multiplicative conjunctives are built component-wise:

A1 ⊎A′1 = A′′1 A2 ⊎A′2 = A′′2

(A1 ⊗A2) ⊎ (A′1 ⊗A′2) = A′′1 ⊗A′′2

∑
a<I A1 = A′1

∑
a<I A2 = A′2∑

a<I(A1 ⊗A2) = A′1 ⊗A′2

Since the conjunctive ⊗ is multiplicative we have to build the modal sum over two
contexts. In other words, the resources are distributed among the two components of the
tuple.

Unit

ϕ; Φ; ∅ ⊢v () : 1

MProd
ϕ; Φ; ∆1 ⊢vK1

v1 : A1 ϕ; Φ; ∆2 ⊢vK2
v2 : A2

ϕ; Φ; ∆1 ⊎∆2 ⊢vK1+K2
(v1; v2) : A1 ⊗A2

LetPair
ϕ; Φ; ∆1 ⊢vK1

v : A1 ⊗A2

ϕ; Φ;x : A1, y : A2,∆2 ⊢cK2
t : B

ϕ; Φ; ∆1 ⊎∆2 ⊢cK1+K2
let (x; y) := v in t : B

For the soundness and completeness proofs, we have to modify the splitting and joining
lemmas, respectively. Instead of doing a case analysis over the value, we now have to induct
over the value. The inductive case for ⊗ follows trivially from the inductive hypotheses.
We also have to prove the subject reduction/expansion cases for the new head reduction
step: let (x; y) := (v1, v2) in t ≻0 t{v1/x, v2/y}, which is trivial.

We can type projection functions, e.g:

∅; ∅; ∅ ⊢c0 fst := λz. let (x; y) := z in returnx : A1 ⊗A2 ⊸ FA1

Note that this typing is not precise (unless A2 is disposable), which means that this
function may throw away resources.

Additive conjunctive The additive conjunctive (&) is a ‘tuple’ over computations.

B ::= · · ·
∣∣B1 & B2

t ::= · · ·
∣∣ ⟨t1; t2⟩ ∣∣ π1(t) ∣∣ π2(t)

T ::= · · ·
∣∣ ⟨t1; t2⟩

98 Call-by-push-value dℓPCFpv

(We also write & in CBPV.) Note that ⟨t1; t2⟩ is a terminal computation. Using the
projections, we can decide to execute one (but not both) of the components. Thus, the
small-step rules are πi ⟨t1; t2⟩ ≻0 ti (for i = 1, 2). Of course, we can also thunk an additive
conjunctive if we want to apply more than one projection. For example, values of type
[a < I] · (B1 &B2) could be forced I times, and we could apply I projections (either π1(·)
or π2(·)) in total.

Since, only one of the computations can be executed, both computations are typed
with the same context and are assigned the same weight. For this reason, we say that &
is additive.

AProd
ϕ; Φ; Γ ⊢cM t1 : B1 ϕ; Φ; Γ ⊢cM t2 : B2

ϕ; Φ; Γ ⊢cM ⟨t1; t2⟩ : B1 & B2

Proj
ϕ; Φ; Γ ⊢cM t : B1 & B2

ϕ; Φ; Γ ⊢cM πi(t) : Bi

Additive sum Additive sums are similar to ordinary sums: We introduce new values
inl(v) and inr(v), and a case distinction operator. The typing rule of the case distinction
operator is similar to the ifz rule – only one the branches is executed (depending on the
value), and the typings thus have the same context and weight.

A ::= · · ·
∣∣A1 ⊕A2

v ::= · · ·
∣∣ inl(v)

∣∣ inr(v)

t := case v [inl(x)⇒ t1 | inr(y)⇒ t2]

(In CBPV, we write + instead of ⊕.) We again have to extend the definition of modal
sums and introduce three new typing rules.

A1 ⊎A′1 = A′′1 A2 ⊎A′2 = A′′2

(A1 ⊕A2) ⊎ (A′1 ⊕A′2) = A′′1 ⊕A′′2

∑
a<I A1 = A′1

∑
a<I A2 = A′2∑

a<I(A1 ⊕A2) = A′1 ⊕A′2

Inl
ϕ; Φ; Γ ⊢vM v : A1

ϕ; Φ; Γ ⊢vM inl(v) : A1 ⊕A2

Inr
ϕ; Φ; Γ ⊢vM v : A2

ϕ; Φ; Γ ⊢vM inr(v) : A1 ⊕A2

CaseSum
ϕ; Φ; ∆1 ⊢vK1

v : A1 ⊕A2 ϕ; Φ;x : A1,∆2 ⊢cK2
t1 : B ϕ; Φ; y : A2,∆2 ⊢cK2

t2 : B

ϕ; Φ; ∆1 ⊎∆2 ⊢cK1+K2
case v [inl(x)⇒ t1 | inr(y)⇒ t2] : B

Disposable types and precise typings The new value types A1 ⊗ A2 and A1 ⊕ A2

are considered disposable (as in Section 5.4), if and only if A1 and A2 are disposable; units
are always disposable. This means that a precise value typing with type 1⊗ (1⊕ Nat[3])
must have weight 0.

Chapter 8

Compositionality and
polymorphism

In this chapter, we will first answer the question whether dℓPCFpv is compositionally
complete. We have already demonstrated in Section 5.5.8 that we can construct dℓPCFv
typings for total (CBV) functions of simple type Nat → Nat in a way that allows us to
instantiate and apply this typing for any argument of simple type Nat. However, the
relative completeness theorems are of a semantic nature, since they assume (enumerations
of) executions and ‘convert’ them into a typing. For example, the actual recursion trees
of fixpoints will be encoded in the ‘generated’ typing. This is a fundamental problem in
practice, since we want to type programs without executing them. Moreover, we may even
want to type programs that are known to diverge. Ideally, a syntactic typing annotation
algorithm would work by structural recursion on a simple typing. Also, this approach does
not work for higher-order functions. In particular, is it possible to type the higher-order
function λx. x 0 in a way such that we can reuse this typing for every possible application
with an argument of simple type Nat→ Nat?

One problem is that when typing a function in dℓPCFv, we have to know how often the
function can be applied later (and the refinements of the arguments). Similarly, in dℓPCFn,
we have to know how often a parameter is used (and the type refinements of each use).
However, this number depends on the context in which the function is used. This number
may even depend on the value of the argument itself, as in λx. ifzx then 0 else Succ(x): If
the argument evaluates to 0, it is only needed once; if it is positive, the argument needs
to be evaluated again.

Perhaps surprisingly, compositionality can actually be attained in an extension of
dℓPCF, which was first shown in [13]. To this end, we need to parametrise over the
negative annotations of types. For example, to annotate a typing of a function with the
simple type U (Nat→ FNat), we need to parametrise over:

1. the number of times the function can be forced and applied, and

2. for each application, the refinement of the argument.

100 Compositionality and polymorphism

Thus, we introduce two refinement variables i/0 and j/1, where the numbers denote
their arities. The dℓPCFpv type assigned to this function is [a < i()] · (Nat[j(a)] ⊸
FNat[K(a)], where K(a) stands for a ‘concrete’ index term, that may be defined using
mutually recursive equations. When forcing and applying this function with a value of
type Nat[L], we substitute i() := 1 and j(a) := L. In the next section of this chapter, we
will summarise a type inference algorithm for dℓPCFpv that is based on this idea.

Besides compositionality, many functional programming languages also feature poly-
morphism. For example, the function fst : A1 ⊗A2 ⊸ FA1 can be typed in the same way
regardless of the value types A1 and A2. Thus, we can assign a polymorphic type to this
function: ∀α1 α2. α1 ⊗ α2 ⊸ Fα1. Another well-known application of polymorphism is
that we can encode inductive data types using Church encoding. It was already observed
in [19] that bounded exponentials together with polymorphism can be used to encode
bounded data types. For example, it is possible to define a type Nat≤I of (encodings of)
natural numbers bounded by I. As another interesting application of bounded Church
encoding, we will define a type Lista<IA of lists with no more than I elements, where a is
free in A.

In the last section of this chapter, we will show that compositionality and polymorph-
ism play well together: It is, in fact, possible to achieve polymorphic and compositionally
reusable typings.

8.1 Compositionality

In this section, we describe a syntax-directed type inference algorithm for dℓPCFpv that is
based on an algorithm for dℓPCFv in [13].1 Instead of defining all cases of the algorithm
formally, we will give illustrative abstract and concrete examples and explain the general
cases.

Extension of the language of index terms (Lℓidx) We first extend Lℓidx with function
variables and variables for mutually recursively defined index terms:

Index terms: I ::= · · ·
∣∣ j(I1, . . . , In)

∣∣K(I1, . . . , In)

Signatures: Σ ::= ∅
∣∣ j/n,Σ

Equations: E ::= ∅
∣∣ (K(a, ..., c) := I), E

Every function variable has an arity, which is declared in the signature Σ. Using an
equational program E , we can define index terms K by mutual recursion.

To extend the semantics of Lℓidx , context valuations ν now also map function variables

1The authors of [13] have implemented the algorithm in OCaml (however, for the call-by-name version
of dℓPCF), but the code is not publicly available (any more). The article also has a mistake in the fixpoint
case, which we correct here. In contrast to the paper, we track the refinement variables in a separate
signature context (Σ), and we also allow concrete index terms to appear at positive positions. These
(purely cosmetic) changes make the generated typings much easier to read.

Compositionality 101

ϕ; Σ; E ⊢ I : well-formed

pa+(ϕ; Σ; E ;Nat[I])

h/ |ϕ| ∈ Σ

pa−(ϕ; Σ; E ;Nat[h(ϕ)])

pa+(a, ϕ; Σ; E ;B) h/ |ϕ| ∈ Σ

pa+(ϕ; Σ; E ; [a < h(ϕ)] ·B)

ϕ; Σ; E ⊢ I : well-formed pa−(a, ϕ; Σ; E ;B)

pa−(ϕ; Σ; E ; [a < I] ·B)

pa∓(ϕ; Σ; E ;A) pa±(ϕ; Σ; E ;B)

pa±(ϕ; Σ; E ;A ⊸ B)

pa±(ϕ; Σ; E ;A1) pa±(ϕ; Σ; E ;A2)

pa±(ϕ; Σ; E ;A1 ⊗ /⊕A2)

pa±(ϕ; Σ; E ;B1) pa±(ϕ; Σ; E ;B2)

pa±(ϕ; Σ; E ;B1&B2)

Figure 8.1: Definition of pa±(ϕ; Σ; E ;A) and pa±(ϕ; Σ; E ;B)

to meta-level functions:2 [[i(I1, . . . , In)]](ν) = ν(i)([[I1]], . . . , [[In]]). The semantics of mu-
tually recursive equations is defined by the least fixpoint that satisfies all the equations
in E .Computation/value typing judgements now have the following shape:

ϕ; Σ; E ; Φ; Γ ⊢vM v : A ϕ; Σ; E ; Φ; Γ ⊢cM t : B

The type system is extended in a trivial way, since at no typing rule, anything is added
to Σ or E . We always assume assume that all index terms are closed (well-formed) under
ϕ, Σ, and E . Moreover, we often leave out the equational program E if it is empty or if we
specify the equations separately.

We can substitute (abstracted) index terms for refinement index variables. A function
substitution on types is written A[j(a, b) := · · ·]. For example:

([b < j(a)] · (Nat[f(a, b)] ⊸ FNat[g(a, b)]))[f(a, b) := a + b, g(a, b) := a .− b] =

([b < j(a)] · (Nat[a + b] ⊸ FNat[a .− b]))

This definition can of course also be lifted to subtypings and typings. Similarly, symbols
from E can be eliminated from a typing if their definitions are not recursive.

Positively and negatively annotated types As already hinted above, the algorithm
computes annotations of the positive positions that depend on the refinements of the
negative positions in a typing. The polarity of an annotation is defined in the standard
way:

• The refinement I in Nat[I] is in a positive position;

• the refinement I in [a < I] ·B is in a negative position;

• all positive/negative positions of B are positive/negative in A ⊸ B;

2Note that valuations of ordinary index variables are not ⊥. However, a function variable i/0 could be
assigned the valuation i() := ⊥.

102 Compositionality and polymorphism

• all positive/negative positions of A are negative/positive in A ⊸ B;

• positive/negative positions of types in contexts Γ are considered negative/positive
positions of the typing.

Thus, for a simple typing of the judgement x : UFNat ⊢c t : B, the algorithm will compute
an index term that describes exactly how often the variable x is forced.

A type is positively annotated, if all refinements at negative positions are applications of
function variables to the index variables ϕ and the other ordinary variables that are bound
in the type. Dually, a type is annotated negatively if all refinements at the positive posi-
tions are the same kind of index terms. Formally, we define the predicates pa±(ϕ; Σ; E ;A)
and pa±(ϕ; Σ; E ;B) by mutual induction, as in Figure 8.1. In addition to these rules, we
assume that each function variable in Σ is used exactly once at the negative positions.
However, they may be used at different positive parts of the type. Furthermore, we define:

• A value/computation type τ is a pa±-annotation of a simple value/computation type
τ̂ (in ϕ; Σ; E), if pa±(ϕ; Σ; E ; τ) and the types have the same shape.

• A context Γ is a pa−-annotation of a simple context Γ̂ (in ϕ; Σ; E), if for all variables
x in Γ, pa−(ϕ; Σ; E ; Γ(x)) and Γ(x) and Γ̂(x) have the same shape. Again, we assume
that all variables in Σ are used exactly once at the positive positions in Γ (which are
negative positions in the typing).

Formal specification of the algorithm The type inference algorithm takes as input
a (simple) CBPV (value/computation) typing Γ̂ ⊢c v : Â (or Γ̂ ⊢c t : B̂). It produces as
output:

• a list of mutually recursive equations E ;

• a pa−-annotation Γ of Γ̂ (closed in ϕ; Σ; E). In particular, if Γ̂(x) = U B̂, then
Γ(x) = [a < I] ·B, where I is a concrete index term that denotes (exactly) how often
the term forces the variable x;

• a pa+-annotation A of Â (or B of B̂) in ϕ; Σ; E ;

• an index term M that is closed in ϕ; Σ; E ;

• a precise dℓPCFpv typing ϕ; Σ; E ; ∅; Γ ⊢vM v : A (or ϕ; Σ; E ; ∅; Γ ⊢cM t : B).

Similar to the algorithm in [13], our algorithm even computes a typing for diverging
programs. However, in their work, the (quasi) typing is deemed ‘invalid’ for diverging
programs, since their version of dℓPCFv does not support diverging index terms. They
thus compute a list of ‘side conditions’, which are constraints of the form ϕ; Φ ⊨ I ↓, that
state that all generated index terms terminate. Proving these side conditions is out of
scope of the type inference algorithm, since it is equivalent to showing that the program
terminates.

Compositionality 103

8.1.1 Examples

Instead of defining the typing annotation algorithm formally, we will discuss here a series
of illustrative examples. We cover all cases of the algorithm and also discuss abstract
examples.

Example 1: Forcing and application

As our first example, we consider the following CBPV function:

(1) x : U (Nat→ FNat) ⊢v x : U (Nat→ FNat)

(3) x : U (Nat→ FNat) ⊢c forcex : Nat→ FNat (2) y : Nat ⊢v y : Nat

(4) x : U (Nat→ FNat), y : Nat ⊢c (forcex) y : FNat

(5) ∅ ⊢c t1 := λx y. (forcex) y : U (Nat→ FNat)→ Nat→ FNat

Since the annotation algorithm works by structural recursion on the simple typing, we
begin annotating the leaf nodes in the typing derivation. So let us begin annotating (1).
The type on right hand side of the typing should be pa+-annotated, and the type of x in
the context should be pa−-annotated. Thus, the translated typing of (1) should have the
following shape:

∅; i/0, l/1, k/1; ∅;x : [c < I] · (Nat[L(c)] ⊸ FNat[k(c)]) ⊢v0 x : [c < i()] · (Nat[l(c)] ⊸ FNat[K(c)])

Here, i/0, l/1, k/1 are fresh function variables and I, L, K are placeholders for index
terms that we have to define. Since the (strict variant of the) rule Var requires that both
types are equivalent, we have to unify the types. In the variable case, the unification is
always trivial. In this example, we simply define I := i(), L(c) := l(c), and K(c) := k(c):

∅; i/0, l/1, k/1; ∅;x : [c < i()] · (Nat[l(c)] ⊸ FNat[k(c)]) ⊢v0 x : [c < i()] · (Nat[l(c)] ⊸ FNat[k(c)])

The typing (2) is translated in the same way: ∅; j/0; ∅; y : Nat[j()] ⊢v0 y : Nat[j()] for a
fresh variable j/0. When translating the forcing (3), we substitute 1 for i() on the left
side of the ⊢. On the right side, we remove the bound and substitute l(c) := l() for a
new variable l/0. We still have to parametrise the typing over k/1, since the result of the
application is not known yet:

∅; k/1, l/0; ∅;x : [c < 1] · (Nat[l()] ⊸ FNat[k(c)]) ⊢c0 forcex : Nat[l()] ⊸ FNat[k(0)]

To translate the typing of the application (4), we have to unify Nat[l()] with Nat[j()].
Therefore, we substitute l() := j(). As the last step, we apply Lam twice:

∅; j/0, k/1; ∅; ∅ ⊢c0 t1 : [c < 1] · (Nat[j()] ⊸ FNat[k(c)]) ⊸ Nat[j()] ⊸ FNat[k(0)]

Now, let us type the “thunked successor function” (thunk s) as an argument to t1. We
first type thunk s parametrically. Thus, we again parametrise over the number of times
thunk s can be forced. In the application to t1, this bound will of course be instantiated
to 1. Let us first type s:

∅; j′/0; ∅; ∅ ⊢c0 s := λx. calc y ← Succ(x) in return y : Nat
[
j′()

]
⊸ FNat

[
1 + j′()

]

104 Compositionality and polymorphism

To thunk this function, we introduce an ordinary index variable c, a function variable i′/0,
and the constraint c < i′(). We also increment the arity of j′, since c is now a parameter
of j′. In other words, thunk s can be forced i′ times and afterwards applied with a value
of type Nat[j′(c)], for c < i′().

c; i′/0, j′/1; c < i′(); ∅ ⊢c0 s : Nat[j′(c)] ⊸ FNat[1 + j′(c)]

∅; i′/0, j′/1; ∅; ∅ ⊢ci′()+∑
c<i′() 0

thunk s : [c < i′()] · (Nat[j′(c)] ⊸ FNat[1 + j′(c)])

To type the application t1 (thunk s), we have to equalise [c < 1] ·(Nat[j()] ⊸ FNat[k(c)]) ≡
[c < i′()] · (Nat[j′(c)] ⊸ FNat[1 + j′(c)]). For this, we need to apply the substitutions
i′() := 1, j′(c) := j() and k(c) := 1 + j′(c) = 1 + j(). Finally, we get:

∅; j/0; ∅; ∅ ⊢c0+1 t1 (thunk s) : Nat[j()] ⊸ Nat[1 + j()]

Note that only remaining function variable is j/0, which stands for the value of the second
curried argument of t1.

Example 2: Multiplicative product and binary modal sum

We explain now how binary modal sums are handled. We translate the following abstract
typing of a multiplicative product, for arbitrary values v1 and v2 with a free variable x:

(1) x : U (Nat ⊸ FNat) ⊢ v1 : Â1 (2) x : U (Nat ⊸ FNat) ⊢ v2 : Â2

x : U (Nat ⊸ FNat) ⊢ (v1; v2) : Â1 ⊗ Â2

Recursively applying the typing annotation algorithm on (1) and (2) yields two pairs index
terms (I1, I2, and K1,K2) that denote how often (exactly) x is used by v1 and v2, and the
arguments of each of the applications after the forcings. Note that we assume that the
algorithm generates the same fresh variables a and j/(1 + |ϕ|) for the annotation of the
type of the variable x.

ϕ; j/(1 + |ϕ|),Σ;x : [a < I1(ϕ)] · (Nat[K1(a, ϕ)] ⊸ FNat[j(a, ϕ)]) ⊢vM1
v1 : A1

ϕ; j/(1 + |ϕ|),Σ;x : [a < I2(ϕ)] · (Nat[K2(a, ϕ)] ⊸ FNat[j(a, ϕ)]) ⊢vM2
v2 : A2

In order to build the modal sum over the two contexts, we first need to ‘shift’ all occurrences
of a in the second typing by I1(ϕ). For this, we first substitute all refinement functions
that have a as argument. In this case, we only need to substitute j(a, ϕ) := j(a+I1(ϕ), ϕ).
Let ρ denote this function substitution, which we apply to the second typing:

. . . ;x : [a < I2(ϕ)ρ] · (Nat[K2(a, ϕ)ρ] ⊸ FNat[j(a + I1(ϕ), ϕ)]) ⊢vM2ρ v2 : A2ρ

In the next step, we have to compute the modal sum. We define types for x that are
equivalent to the above types but are in the right shape so that the binary modal sum is
defined:

B := Nat[if a < I1(ϕ) thenK1(a, ϕ) elseK2(a, ϕ)ρ{a− I1(ϕ)/a}] ⊸ FNat[j(a, ϕ)]

Compositionality 105

· · · ⊢ [a < I1(ϕ)] ·B ≡ [a < I1(ϕ)] · (Nat[K1(a, ϕ)] ⊸ FNat[j(a, ϕ)])

· · · ⊢ [a < I2ρ(ϕ)] ·B{a + I1(ϕ)/a} ≡ [a < I2ρ(ϕ)] · (Nat[K2(a, ϕ)ρ] ⊸ FNat[j(a + I1(ϕ), ϕ)])

We now apply subsumption in the contexts of the two above typings and derive the desired
typing:

. . . ;x : [a < I1(ϕ)] ·B ⊢ (M1)v1 : A1 . . . ;x : [a < I2ρ(ϕ)] ·B{a + I1(ϕ)/a} ⊢vM2ρ
v2 : A2ρ

ϕ; j/(1 + |ϕ|),Σ;x : [a < I1(ϕ) + I2ρ(ϕ)] ·B ⊢vM1+M2ρ
(v1; v2) : A1 ⊗A2ρ

In the general case where the type of x contains more function variables, we also have
to substitute all of them such that the parameter a is shifted by I1(ϕ). Moreover, if there
is more than one variable, we have to construct the modal sums over the types in the same
way.

Example 3: Forcing and applying twice

In this example, we type t3 := thunkλx y. bind z ← (forcex) y in (forcex) z.3 We will also
apply this function, which shows that the algorithm may also compute recursive equations
even for non-recursive functions. The function is simply typed as follows:

(1) y : Nat, x : U (Nat→ FNat) ⊢c (forcex) y : FNat (2) z : Nat, x : U (Nat→ Nat) ⊢c (forcex) z : FNat

(3) y : Nat, x : U (Nat→ FNat) ⊢c bind z ← (forcex) y in (forcex) z : FNat

∅ ⊢c t3 : U (Nat→ FNat)→ (Nat→ FNat)

We first annotate the typings of (1) and (2) as in Example 1. We can assume that the
algorithm generates the same annotating variables for x.

∅; j/0, k/1; ∅;x : [a < 1] · (Nat[j()] ⊸ FNat[k(a)]), y : Nat[j()] ⊢c0 (forcex) y : FNat[k(0)]

∅; j′/0, k/1; ∅;x : [a < 1] · (Nat[j′()] ⊸ FNat[k(a)]), z : Nat[j′()] ⊢c0 (forcex) z : FNat[k(0)]

We now have to join the two types for x in the contexts. We already know that
the new bound will be 1 + 1, since both parts of the program force x exactly once.
As in the previous example, we have to substitute k(a) := k(1 + a) and define B :=
Nat[if a < 1 then j() else j′(){a− 1/a}] ⊸ FNat[k(a)].

∅; k/1, j/0, j′/0; ∅;x : [a < 1] ·B, y : Nat[j()] ⊢c0 (forcex) y : FNat[k(0)]

∅; k/1, j/0, j′/0; ∅;x : [a < 1] ·B{1 + a/a}, z : Nat[j′()] ⊢c0 (forcex) z : FNat[k(1)]

To apply Bind, we need to unify Nat[k(0)] ≡ Nat[j′()]. Therefore, we substitute j′() :=
k(0) in the above two typings, and we get:

∅; j/0, k/1; ∅; ∅ ⊢c0 t3 : [a < 2] · (Nat[if a < 1 then j() else k(0)] ⊸ FNat[k(a)]) ⊸ (Nat[j()] ⊸ FNat[k(1)])

Note that the refinement of the input of the argument depends on its first output.
Now we apply this function to thunk s, which we have already typed in Example 1.

After renaming, the typing is: ∅; i′/0, l/1; ∅; ∅ ⊢ci′() thunk s : [c < i′()] · (Nat[l(c)] ⊸
3Note that this function is not (after thunking) equal to the CBV translation of λx y. x (x y), which was

chosen as an example in [13]. Although both thunked functions are observationally equivalent, they have
different dℓPCFpv refinements.

106 Compositionality and polymorphism

FNat[1 + l(c)]). We have to substitute i′() := 2, l(a) := if a < 1 then j() else k(0), and
k(a) := 1 + l(a). However, this substitution is circular, so we end up with a recursive
definition for l/1, which can be easily solved (by unfolding) to a non-recursive index term:

i′() := 2

k(a) := 1 + l(a)

l(a) := if a < 1 then j() else k(0) = if a < 1 then j() else 1 + l(0) = if a < 1 then j() else 1 + j()

k(1) := 1 + l(1) = 2 + j()

Thus, after simplification, the generated typing has the following judgement:

∅; j/0; ∅; ∅ ⊢c2 t3 (thunk s) : Nat[j()] ⊸ FNat[2 + j()]

Example 4: Case distinction

The rule Ifz is a combination of a multiplicative and an additive part. The second and
third typing use the same context and weight, since only one of the branches is executed.
We first annotate the value typing and the two computation typings of t1 and t2. We can
assume that the generated signatures are identical in the three typings.

ϕ; Σ; ∅; ∆1 ⊢vK1
v : Nat[J] ϕ; Σ; ∅; ∆2 ⊢cK2

t1 : B1 ϕ; Σ; ∅; ∆3 ⊢cK3
t2 : B2

We define a new context ∆23 := if J ≡ 0 then∆2 else∆3, B := if J ≡ 0 thenB1 elseB2,
and K23 := if J ≡ 0 thenK2 elseK3.

4 Here, we use a case-distinction operator on types
with the same shape, as in Definition 5.33 in Section 5.5.3. By adding the constraints
J ≡ 0 and J > 0 to the second and third typing, we can substitute ∆1 and ∆2 with ∆23,
respectively. Finally, we build the binary modal sum over ∆1 and ∆23 as in Example 2
and apply Ifz.

Example 5: Thunks and bounded sums

We will now annotate the following abstract thunked computation and explain how boun-
ded sums are built: x : U (Nat → FNat) ⊢v thunk t : U (Nat → FNat). We first run the
algorithm on t and introduce a fresh refinement variable i/0 and the bound a < i():

a; i/0, k/2, l/1; a < i();x : A(a) ⊢cM(a) t : Nat[l(a)] ⊸ FNat[N(a)]

with A(a) := [b < J(a)] · (Nat[K(a, b)] ⊸ FNat[k(a, b)]), where K(·, ·), N(·), and M(·)
stand for concrete index terms (that may refer to k/2 and l/1). To create the bounded
sum, we substitute k(a, b) := k̂(b +

∑
d<a J(d)) for a fresh refinement index variable k̂/1.

(In the following, we abbreviate this substitution to ρ).

a; i/0, k/2, k̂/1, l/1; a < i();x : [b < J(a)] · (Nat[K(a, b)] ρ ⊸ FNat[k̂(b +
∑

d<a J(d))])

⊢cM(a)ρ t : Nat[l(a)] ⊸ FNat[N(a)] ρ

4Remember that we can use ⊨ J ≡ 0 instead of ⊨ 0 ≳ J , since the generated typings are precise.

Compositionality 107

Then, we use the ‘function’ f−1(c) := findSlota (i()) (J(a)) c to construct the modal sum∑
a<i()[b < J(a)] ·B{b+

∑
d<a J(d)/c} = [c <

∑
a<i() J(a)] ·B with the following equival-

ence:

θ−1 := {π1(f
−1(c))/a, π2(f

−1(c))/b}

B := Nat[K(a, b)] ρθ−1 ⊸ FNat[k̂] ≡ (Nat[K(a, b)] ρ ⊸ FNat[k̂(b+
∑

d<a J(d))])θ
−1

. . . ; a < i() ⊢ [b < J(a)] · (Nat[K(a, b)] ρ ⊸ FNat[k̂(b+
∑
d<a

J(d))]) ≡ [b < J(a)] ·B{b+
∑
d<a

J(d)/c}

We apply the above equivalence to the typing of t and we can finally apply Thunk:

a; i/0, k̂/1, l/1; a < i();x : [b < J(a)] ·B{b+
∑

d<a J(d)/c} ⊢
c
M(a) t : Nat[l(a)] ⊸ FNat[N(a)] ρ

∅; i/0, k̂/1, l/1; ∅;x : [c <
∑

a<i() J(a)] ·B ⊢
v
i()+

∑
a<i() M(a) thunk t : [a < i()] · (Nat[l(a)] ⊸ FNat[N(a)])

Example 6: Recursion

We now discuss the fixpoint case.5 The basic idea of annotating this typing is that annot-
ating the body yields a description of the recursion tree:

• After annotating the body, we introduce a fresh ordinary index variable b and incre-
ment the arity of function variables.

• This yields an index term I(b) which denotes how often x is forced at each point in
the recursion tree.

• H := △1
b I(b) denotes the size of the recursion tree.

• We already know the weight J(b) of each node, so we can define the total weight of
the fixpoint as M := H .− 1 +

∑
b<H J(b).

• After annotating the typing of the body, we have to define dℓPCFpv types B1, B2

that satisfy the equivalence in Fix. For this, we have to introduce mutually recursive
equations, which (optionally) can be simplified manually.

• Finally, we apply Fix. The final type is equivalent to B2{0/b}.

As an example, we consider the following primitive recursive function, which always
returns the constant 0. In the following simple typing, we abbreviate B̂ := Nat→ FNat.

x : U B̂ ⊢c t6 := λy. ifz y then return 0 else calc y′ ← Pred(y) in (forcex) y′ : B̂

∅ ⊢c µx. t6 : B̂

5This case is broken in [13]. In particular, Lemma 4.6 is wrong. It postulates an algorithm that
generates an equational program that equalises τ{I/a} ≡ σ, where one of the types τ and σ is positively
annotated and the other is negatively annotated. However, such an equivalence does not make sense if
a itself is a free variable of I, which happens in the fixpoint case. The same bug can be observed in the
(non-public) OCaml code, where non-wellformed equations are defined.

108 Compositionality and polymorphism

Typing the body t6 is routine. We introduce variables k/2 and g/1. g(b) stands for the
input (on the right side of the ⊢) of the b-th node in the forest. k(a, b) stands for the a-th
result of applying x at the b-th node in the tree.

b; g/1, k/2; b < H;x : [a < I(b)] ·B1(a, b) ⊢cJ(b) t6 : B2(b)

B1(a, b) := Nat[G(a, b)] ⊸ FNat[k(a, b)] B2(b) := Nat[g(b)] ⊸ FNat[K(b)]

H := △1
b I(b) M := (H .− 1) +

∑
b<H J(b)

J(b) := 0 (weight at the bth node in the recursion tree)

I(b) := if g(b) ≡ 0 then 0 else 1 (number of recursive calls (= no. of children) at/of node b)

G(a, b) := if g(b) ≡ 0 then⊥ else g(b) .− 1 (input of x at the bth node in the recursion tree)

K(b) := if g(b) ≡ 0 then 0 else k(0, b) (output of the body at the bth node)

Note that G(a, b) is not defined in case g(b) ≡ 0. Intuitively, this is because x is not called
at the leaf of the recursion tree. The crucial step in the fixpoint typing is that we have to
ensure that the following subtyping holds:

a, b; g/1, h/2; a < I(b), b < H ⊢ B2(childb(a)) ≡ B1(a, b)

⇐⇒
· · · ⊢ Nat[g(childb(a))] ⊸ FNat[K(childb(a))] ≡ Nat[G(a, b)] ⊸ FNat[k(a, b)]

where childb(a) := 1 + b + (△a
c I{1 + b + c/b}), which is an encoding for the number of

the node that is the ath child of a node b in the recursion tree. (In this example, we have
childb(a) = b + 1, since the recursion tree is linear.)

To solve the equivalence, we first substitute k(a, b) := K(childb(a)). However, g(0)
is not specified by the above equivalence, since childb(a) > 0. In fact, g(0) denotes the
‘external’ input of the fixpoint (at the root of the recursion tree), so we have to generalise
over this value by introducing a fresh function variable d/0. For b > 0, we can define
g(b) using an ‘inverse’ of the function childb(a). Let π1(parent(b)), for b > 0, denote the
number of the parent node of b in the recursion tree and let π2(parent(b)) be the child
number. In other words, we have · · · ⊨ b ≡ childπ1(parent(b))(π2(parent(b))). In our example,
we simply have parent(b) = (b .− 1, 0) for b > 0, since the recursion tree is linear. Now, we
can substitute g/1:

g(b) := if b ≡ 0 then d() else let (b, a) := parent(b) inG(a, b)

However, note that we have just introduced mutually recursive equations for the index
terms K and G:

K(b) = if g(b) ≡ 0 then 0 else k(0, b) g(b) = if b ≡ 0 then d() elseG(0, b .− 1)

G(a, b) = if g(b) ≡ 0 then⊥ else g(b) .− 1 k(a, b) = K(b + 1)

Since the annotation algorithm cannot solve recurrence equations, it has to output the
equations for K and G (possibly after substituting g and k). The algorithm is done

Compositionality 109

afterwards, since the subtypings hold by definition. The final type is B2(0), which is by
definition equivalent to Nat[d()] ⊸ FNat[K(0)].

We can solve the recurrences and simplify the weight M :

g(b) = if b ≡ 0 then d() else if g(b− 1) ≡ 0 then⊥ else g(b− 1)− 1 = d() .− b (by induct. if b ≤ d())

K(b) = if g(b) ≡ 0 then 0 elseK(b + 1) = if d()− b ≡ 0 then 0 elseK(b + 1) = 0

I(b) = if b ≤ d() then 0 else 1 H = △1
b I(b) = 1 + d() M = (H .− 1) +

∑
b<H J(b) = d()

Therefore, the final (simplified) typing has following judgement: ∅; d/0; ∅ ⊢cd() µx. t6 :

Nat[d()] ⊸ FNat[0]. By the soundness theorem of dℓPCFpv, this means that (µx. t6)n ⇓n 0
for all constants n.

Example 7: Call-by-value iteration

We have demonstrated in the previous example how to annotate arbitrary fixpoints. How-
ever, the generated weight uses an explicit encoding of the recursion tree. This can make
reasoning over the index terms complicated in general. However, we can derive admissible
typing rules for restricted forms of recursion. In Section 5.6, we have already shown that
higher-order iteration can be embedded in dℓPCFv. Of course, we can also implement
System T like iteration in CBPV:

iter t1 t2 := µf. λx. ifzx then t2 else calcx
′ ← Pred(x) in bind y ← force f x′ in (force (thunk t1)) y

Note that we use force (thunk t1) to increment the cost by one for each application of t1.
Since we do not have to thunk the fixpoint computation, the admissible typing rule is
simpler as in dℓT:

a, ϕ; Σ; a < I,Φ; ∆1 ⊢cM1
t1 : Â{1 + a/a}⊸ F Â ϕ; Σ; Φ; ∆2 ⊢cM2

t2 : F Â{i()/a}
ϕ; Σ; Φ; (

∑
a<I ∆1) ⊎∆2 ⊢c

I+
(∑

a<I M1

)
+M2

iter t1 t2 : Nat[I] ⊸ F Â{0/a}

We can extend the annotation algorithm with a special case for iter t1 t2:

• We recursively annotate the typing of t2 as usual.

• Then we annotate the typing of t1 and add a function variable i/0 (for I). We set
the constraint to a < i(), where a is a fresh ordinary index variable.

• This computes a negative annotation for the simple type Â and positive annotation
for F Â.

• We define a dℓPCFpv type A and compute substitutions such that the first type is
equivalent to A{1 + a/a}⊸ FA and the second type is equivalent to FA{i()/a}.

• Finally, we build the bounded and binary sum as in the previous cases and apply
the above admissible typing rule.

As an example, we annotate the following typing:

∅ ⊢c λx. t7 := iter (forcex) (forcex 1) : U (Nat→ FNat)→ (Nat→ FNat)

110 Compositionality and polymorphism

Recursively applying the annotation algorithm to the bodies of the iteration is routine:

a; i/0; j/1, k/2; a < i();x : [b < 1] · (Nat[j(a)] ⊸ FNat[k(a, b)]) ⊢c0 forcex : Nat[j(a)] ⊸ FNat[k(a, 0)]

∅; k′/1; ∅;x : [b < 1] · (Nat[1] ⊸ FNat
[
k′(b)

]
) ⊢c0 forcex 1 : FNat

[
k′(0)

]
Now we define a type A that satisfies the following two equalities:

a; i/0, j/1, k/2; a < i() ⊢ A{1 + a/a}⊸ FA ≡ Nat[j(a)] ⊸ FNat[k(a, 0)]

∅; k′/1; ∅ ⊢ FA{i()/a} ≡ FNat[k′(0)]

The (positively annotated) type A is defined by case analysis on a: If a < i(), it is
equivalent to the result type of t1 and otherwise to the type of t2.

A := if a < i() thenNat[k(a, 0)] else Nat[k′(0)] = Nat
[
if a < i() then k(a, 0) else k′(0)

]
To satisfy the left equality, we also need to substitute j/1:

A{1 + a/a} = Nat
[
if 1 + a < i() then k(1 + a, 0) else k′(0)

]
≡ Nat[j(a)]

=⇒ j(a) := J(a) := if 1 + a < i() then k(1 + a, 0) else k′(0)

We therefore apply subsumption and the substitution of j/1 on the two typings:

a; i/0, k′/1, k/2; a < i();x : [b < 1] · (Nat[J(a)] ⊸ FNat[k(a, b)]) ⊢c0 forcex : A{1 + a/a}⊸ FA

∅; i/0, k′/1, k/2; ∅;x : [b < 1] · (Nat[1] ⊸ FNat[k′(b)]) ⊢c0 forcex 1 : FA{i()/a}
We now build the bounded modal sum over the context of the above two typings. We

have to build a bounded sum over the first context (as in Example 5) and build a binary

sum of this sum and the second context. At the end, only the refinement variables k̂/1
and i/0 remain.

∅; i/0, k̂/1; ∅;x : [c < i() + 1] · (Nat[J ′(c)] ⊸ FNat[k̂(c)]) ⊢ci() t7 : Nat[i()] ⊸ FNat[k̂(0)]

∅; i/0, k̂/1; ∅; ∅ ⊢ci() λx. t7 : [c < i() + 1] · (Nat[J ′(c)] ⊸ FNat[k̂(c)]) ⊸ Nat[i()] ⊸ FNat[k̂(0)]

J ′(c) := if c < i() then (J(c)[k(a, b) := k̂(a), k′(b) := k̂(b + i())]) else 1

= if c < i() then (if 1 + c < i() then k̂(c + 1) else k̂(0 + i())) else 1

= if c < i() then k̂(c + 1) else 1 (simplification for this specific example)

Now, let us type (λx. t7) (thunk s), where thunk s is typed as in the first example:

∅; i′/0, l/1; ∅; ∅ ⊢vi′() thunk s : [c < i′()] · (Nat[l(c)] ⊸ FNat[1 + l(c)])

We have to substitute i′() := i() + 1 (since the successor function is applied i() + 1 times)
and l(c) := J ′(c), and k̂(c) := 1+l(c). The only remaining refinement index variable is i/0.
However, note that the substitutions are circular, so J ′ is a recursively defined function.
We can manually solve the recurrence and compute k̂(0), which is the final result.

l(c) := J ′(c) k̂(c) := 1 + l(c)

J ′(c) := if c < i() then k̂(c + 1) else 1 = if c < i() then 1 + J ′(c + 1) else 1 = 1 + (i() .− c)

k̂(0) = 1 + l(0) = 1 + J ′(0) = 2 + i()

We thus get the final typing ∅; i/0; ∅; ∅ ⊢ci()+i()+1 (λx. t7) (thunk s) : Nat[i()] ⊸ Nat[2 + i()].

Polymorphism 111

Example 8: Non-termination

In our generalisation of dℓPCF, we can type non-terminating computations. A diverging
program must have weight ⊥ (which can be thought as infinite resource usage) and can
have any type Nat[K], in particular Nat[⊥] (where ⊥ can be thought as undefined or
unknown). For example, we can type a diverging program that forces a variable in every
iteration, which is simply typed as follows:

x : UFNat, y : UFNat ⊢c t8 := bind ← force y in forcex : FNat

y : UFNat ⊢c µx. t8 : FNat

Let K be an arbitrary index term (e.g. any constant or ⊥). We can then assign the type
FNat[K] to the fixpoint computation:

b; l/1; b < H;x : [a < 1] · (FNat[K]), y : [a < 1] · (FNat[l(a)]) ⊢c0 t8 : FNat[K]

∅; l/1; ∅; y : [a < ⊥] · (FNat[l(a)]) ⊢cM µx. t8 : FNat[K]

where H := △1
b 1 ≡ ⊥ and M := (H .− 1) +

∑
b<H 0 ≡ ⊥.

8.2 Polymorphism

We extend our type system with type variables (e.g. α) and abstraction over type variables.
Every type variable α has an arity, which is the number of index terms arguments. For
example, if α has the arity 2, written as α/2, then α(I1, I2) is a well-formed value type.
The signature context Σ now assigns arities to type variables. Finally, we introduce
quantification over value types at the level of computation types: ∀α/n.6

Value types: A ::= · · ·
∣∣ α(I1, . . . , In)

Computation types: B ::= · · ·
∣∣ ∀α/n.B

Signature context: Σ ::= ∅
∣∣ α/n,Σ

Computations: t ::= · · ·
∣∣ Λ. t

∣∣ t⟨⟩
Terminal comp.: T ::= · · ·

∣∣ Λ. t

Type variables α/n are placeholders for value types that are abstracted over n index
variables. For example, we may apply the instantiation α(a, b) := Nat[a + b] to Fα(I1, I2),
which yields FNat[I1 + I2].

Into the syntax of computations, we introduce type abstraction and instantiation oper-
ators, Λ and ⟨⟩. These operators are uninteresting from the perspective of the operational
semantics; they just denote the places at which types are abstracted and instantiated. We

6Other combinations are also possible, e.g. ∀β/n.A as a value type abstracted over a computation type
(as mentioned in [27]). However, we will only need one kind of quantification in our examples.

112 Compositionality and polymorphism

add the following rules for Λ and ⟨⟩:7

α/n,Σ; Φ ⊨ α(Ii) ≡ α(Jn) for i = 1, . . . , n

α/n,Σ; Φ ⊢ α(I1, . . . , In) ⊑ α(J1, . . . , Jn)

α/n,Σ;ϕ; Φ ⊢ B1 ⊑ B2

Σ;ϕ; Φ ⊢ ∀α/n.B1 ⊑ ∀α/n.B2

α/n,Σ;ϕ; Φ; Γ ⊢cM t : B

Σ;ϕ; Φ; Γ ⊢cM Λ. t : ∀α/n.B
Σ;ϕ; Φ; Γ ⊢cM t : ∀α/n.B

Σ;ϕ; Φ; Γ ⊢cM t⟨⟩ : B[α(a1, . . . , an) := A] (Λ. t)⟨⟩ ≻0 t

8.2.1 Church encoding

Church encoding is a scheme to encode recursive (inductive) data types using polymorph-
ism. For example, the type of natural numbers can be encoded as ∀α. α→ (α→ α)→ α.
The number n is encoded in System F as Λ. λx. λf. fn(x), which means that the function
f is applied n times to x, similar to the iteration operator of System T.

Bounded numbers In [19], it was noted that it is possible in BLL to exploit polymorph-
ism and bounded exponentials to define a type Nat≤I that encodes natural numbers less
then or equal to I. Unsurprisingly this is also possible in our polymorphic extension of
dℓPCFpv:

Nat≤I := ∀α/1. α(0) ⊸ [a < I] · (α(a) ⊸ Fα(1 + a)) ⊸ Fα(I)

This (computation) type expresses that the ‘successor’ function can be applied at most I
times, where the index variable a stands for the number of the current iteration. Note that
the type Nat≤I is similar to the (polymorphic version of the) type of iteration in System T
(see rule iter in Figure 4.2).

It is easy to convert a Church-encoded ‘number’ of type Nat≤I into a computation of
type FNat[I]. For this, we instantiate α(a) := Nat[a], and we apply this to 0 and the
‘native’ thunked successor function:

· · · ⊢cM t : Nat≤I

· · · ⊢cM t⟨⟩ : · · · · · · ⊢v0 0 : Nat[0] · · · ⊢vI thunk s : [a < I] · (Nat[a] ⊸ FNat[1 + a])

· · · ⊢cM+I t⟨⟩ 0 (thunk s) : FNat[I]

The successor function on Church-encoded numbers can be implemented and typed as
follows, where we parametrise over the natural index variable a that stands for the bound
of the input.

· · · , f : [b < a] · (α(b) ⊸ Fα(1 + b))

⊢c0 (forcen)⟨⟩x f : Fα(a)

· · · , y : α(a), f : [b < 1] · (α(a + b) ⊸ Fα(a + 1 + b))

⊢c0 force f y : Fα(1 + a)

α/1; a; ∅;n : [c < 1] · Nat≤a, x : α(0), f : [b < 1 + a] · (α(b) ⊸ Fα(1 + b))

⊢c0 bindx← (forcen)⟨⟩x f in force f y : Fα(1 + a)
...

∅; a; ∅; ∅ ⊢c0 λn.Λ. λx f. bindx← (forcen)⟨⟩x f in force f y : ([c < 1] · Nat≤a) ⊸ Nat≤1+a

7In BLL, the index variables in an instantiation α(a1, . . . , an) := A may only be used at the positive
positions in A. Thus, BLL has the weaker premise ⊨ I ≤ J for ⊢ α(I) ⊑ α(J).

Polymorphism 113

c : [< 1] · (A{0/a}(α(I − 1) (Fα(I))

x0 : A{0/a} c : [< 1] · (A{1/a}(α(I − 2) (Fα(I − 1))

x1 : A{1/a} · · ·

· · · c : [< 1] · (A{I − 1/a}(α(0) (Fα(1))

xI−1 : A{I − 1/a} n : α(0)

· · ·

Figure 8.2: Visualisation of the type Lista<IA as a recursion tree of the right fold operation

Observe that in the typing, the argument forces the new successor function f I-times,
and f is forced one more time afterwards. Moreover, note that the typing has weight 0,
since the computation just ‘consumes’ resources from its input and does not allocate new
resources.

Bounded lists We can define the type Lista<IA of lists with at most I elements. Here,
a may be a free index variable of A that ranges from 0 to I .− 1.

Lista<I := ∀α/1. [a < I] · (A{I .− a .− 1/a}⊸ α(a) ⊸ Fα(1 + a)) ⊸ α(0) ⊸ Fα(I)

The type corresponds to the type of the right fold operation, which replaces the cons
constructor with a function f and the nil constructor with a value n, which is visualised
in Figure 8.2. Note that the type of the function argument implies that the function c
can be applied (at most) I times. The 0th application has the head of the list as first
argument and the result of the fold of the tail of the list. For example, the list [0; 1; 2] can
be encoded as the following computation of type Lista<3Nat[a]:

Λ. λc n. bindx1 ← (force c) 2n in bindx2 ← (force c) 1x1 in (force c) 0x1

Note that although this function is observationally equivalent to the (unthunked) transla-
tion of the CBV function Λ. λc n. c 0 (c 1 (c 2n)), these computations do not have equivalent
types:

Lista<3Nat[a] = ∀α/1. [a < 3] · (Nat[2 .− a] ⊸ α(a) ⊸ Fα(1 + a)) ⊸ α(0) ⊸ Fα(3)

̸≡ ∀α/1. [a < 3] · (Nat[a] ⊸ α(2 .− a) ⊸ Fα(3 .− a)) ⊸ α(0) ⊸ Fα(3)

Observe that ‘order’ the refinements in the second arrow type is reversed (i.e. a − 2 is
substituted for a). The reason for this is that the modal sum operator contracts the types

114 Compositionality and polymorphism

of variables in syntactic order, not in the execution order. In the first computation, the
left-most use of the variable c corresponds to the application with 2, and 0 in the second
computation.

Of course, we can also type the constructors. For example, the typing derivation for
the constructor cons is similar to the derivation for the successor function.

∅; ∅; ∅; ∅ ⊢c0 nil := Λ. λc n. returnn : ∀α/1. Lista<0α(a)

∅;ϕ; ∅; ∅ ⊢c0 cons := Λ. λx xs.Λ. λc n. bind y ← (force xs)⟨⟩ c n in (force c)x y :

∀α/1. α(0) ⊸ [< 1] · Lista<Iα(1 + a) ⊸ Lista<1+Iα(a)

∅;ϕ; ∅; ∅ ⊢c1 cons ′ := Λ. λx. λxs. return thunk (cons⟨⟩x xs) :

∀α/1. α(0) ⊸ [< 1] · Lista<Iα(1 + a) ⊸ F ([< 1] · Lista<1+Iα(a))

∅;ϕ; ∅; ∅ ⊢c2I1 app := Λ. λxs ys. (force xs)⟨⟩ ys (thunk cons ′) :

∀α/1. [< 1] · Lista<I1α(a) ⊸ [< 1] · Listb<I2α(b + I1) ⊸ F [< 1] · Listb<I1+I2α(b)

The typing of nil is similar to the typing of the encoding of the constant 0:

α/1; ∅; ∅;n : α(0), c : [a < 0] · · · · ⊢v0 n : α(0)

α/1; ∅; ∅;n : α(0), c : [a < 0] · · · · ⊢c0 returnn : Fα(0)

α/1; ∅; ∅; ∅ ⊢c0 λn c. returnn : Lista<0α(a)

∅; ∅; ∅; ∅ ⊢c0 Λ. λn c. returnn : ∀α/1. Lista<0α(a)

The typings of the other functions are shown in Figure 8.3. The typing of cons is similar
to the typing of the successor function. The function cons ′ is an auxiliary function needed
in app that thunks the resulting list. The function app iterates over the elements of the
first list xs and adds them to a new, growing list. Visually, we replace n by ys and c
by cons ′ in Figure 8.2. We have to instantiate the type variable of cons ′ to a type that
represents exactly these intermediate lists. Note that the result of app is a thunked list.

8.3 Compositionality and polymorphism

As a last remark for this part of the thesis, note that we can combine both features of this
chapter. This means that we can define a variant of dℓPCFpv that both supports compos-
itional typings, polymorphism, and in which simple typings can be embedded (using ⊥ as
refinements).

First, the environment Σ has to track the arity of function variables and type variables.
However, we have to be careful not to allow non-precise typings. In particular, there is
no way to precisely type the function fst : ∀α1 α2. α1 ⊗ α2 ⊸ α1, since α2 could stand
for a non-disposable type. Therefore, we have to thunk the arguments. The annotation
algorithm works when every type in the context is either a disposable type (i.e. Nat[I] or
1) or a thunked type.

∅;α1/1, α2/1; ∅;x : ([a < 1] · Fα1(a))⊗ ([a < 0] · Fα2(a)) ⊢c0 let (y; z) := x in force y : Fα1(0)

∅; ∅; ∅; ∅ ⊢c0 Λ.Λ. λx. let (y; z) := x in force y : ∀α1/1α2/1. ([a < 1] · Fα1(a))⊗ ([a < 0] · Fα2(a)) ⊸ Fα1(0)

Alternatively, we can assume as an invariant that all type variables stand for disposable
types. Then, in the type instantiation rule, we have to check that the type is disposable.

Compositionality and polymorphism 115

(b
y
in
st
a
n
ti
a
ti
n
g
xs

w
it
h
α
(a
)
:=

α
′ (
a
))

··
·⊢

0
(f
or
ce

xs
)⟨
⟩
:
[a

<
I
]
·(
α
(I

. −
1

. −
a
)
⊸

α
′ (
a
)
⊸

F
α
′ (
1
+

a
))

⊸
α
′ (
0
)
⊸

F
α
′ (
I
)

. . .

··
·,

c
:
[a

<
I
]
·(
α
(I

. −
a
)
⊸

α
′ (
a
)
⊸

F
α
′ (
1
+

a
))
⊢c 0

(f
or
ce

xs
)⟨
⟩c

n
:
F
α
′ (
I
)

··
·⊢

c 0
fo
rc
e
c
:
α
(0
)
⊸

α
′ (
I
)
⊸

F
α
′ (
1
+

I
)

. . .

··
·;

c
:
[a

<
1
]
·(
α
(a

+
�

��
I

. −
I
)
⊸

α
′ (
a
+

I
)
⊸

F
α
′ (
1
+

a
+

I
))
,

x
:
α
(0
),
y
:
α
′ (
I
)
⊢c 0

(f
or
ce

c)
x
y
:
F
α
′ (
1
+

I
)

α
/
1
,α
′ /
1
;ϕ

;∅
;x

:
α
(0
),
xs

:
[
<

1
]
·L

is
t a

<
I
α
(1

+
a
),
c
:
[a

<
1
+

I 1
]
·(
α
(I

+
�

��
1

. −
1

. −
a
)
⊸

α
′ (
a
)
⊸

F
α
′ (
1
+

a
))
,n

:
α
′ (
0
)
⊢c 0

b
in
d
y
←

(f
or
ce

xs
)⟨
⟩c

n
in
(f
or
ce

c)
x
y
:
F
α
′ (
1
+

I
)

. . .

∅;
ϕ
;∅

;∅
⊢c 0

co
n
s
:=

Λ
.λ

x
xs

.Λ
.λ

c
n
.b

in
d
y
←

(f
or
ce

xs
)⟨
⟩c

n
in
(f
or
ce

c)
x
y
:
∀α

/
1
.α

(0
)
⊸

[
<

1
]
·L

is
t a

<
I
α
(1

+
a
)
⊸

L
is
t a

<
1
+
I
α
(a
)

b
y
in
st
a
n
ti
a
ti
n
g
xs

w
it
h
α
(a
)
:=

[
<

1
]
·L

is
t b

<
a
+
I
2
α
(b

+
I 1

. −
a
)

··
·⊢

c 0
(f
or
ce

xs
)⟨
⟩
:
[a

<
I 1
]
·B

co
n
s
′(
a
)
⊸

[
<

1
]
·L

is
t b

<
I
2
α
(b

+
I 1
)

⊸
F
([
a
<

1
]
·L

is
t b

<
I
1
+
I
2
α
(b

+
�

�
�

I 1
. −
I 1
))

b
y
in
st
a
n
ti
a
ti
n
g
co
n
s
′
w
it
h
α
(b
)
:=

α
(b

+
I 1

. −
1

. −
a
)

··
·;

a
<

I 1
;·
··
⊢v 1

co
n
s
′
:
B

co
n
s
′(
a
)

··
·⊢

v I
1
+
∑ a

<
I
1
1
th
u
n
k
co
n
s
′
:
[a

<
I 1
]
·B

co
n
s
′(
a
)

α
/
1
;ϕ

;∅
;x
s
:
[
<

1
]
·L

is
t a

<
I
1
α
(a
),
y
s
:
[
<

1
]
·L

is
t b

<
I
2
α
(b

+
I 1
)
⊢ 2

I
1
(f
or
ce

xs
)⟨
⟩y

s
(t
h
u
n
k
co
n
s
′)

:
F
[
<

1
]
·L

is
t b

<
I
1
+
I
2
α
(b
)

. . .

∅;
ϕ
;∅

;∅
⊢c 2

I
1
a
p
p
:=

Λ
.λ

xs
y
s
.(
fo
rc
e
xs

)⟨
⟩y

s
(t
h
u
n
k
co
n
s
′)

:
∀α

/
1
.[

<
1
]
·L

is
t a

<
I
1
α
(a
)
⊸

[
<

1
]
·L

is
t b

<
I
2
α
(b

+
I 1
)
⊸

F
[
<

1
]
·L

is
t b

<
I
1
+
I
2
α
(b
)

W
it

h
:
B

co
n
s
′(
a
)

:=
α

(I
1

. −
a

. −
1)

⊸
[
<

1
]·
L
is
t b
<
a
+
I 2
α

(b
+
I 1

. −
a
)
⊸

F
[
<

1]
·L

is
t b
<
1
+
a
+
I 2
α

(b
+
I 1

. −
a

. −
1)

F
ig

u
re

8
.3

:
E

x
a
m

p
le

ty
p

in
gs

of
p

ol
y
m

or
p

h
ic

li
st

op
er

at
io

n
s
co
n
s

an
d
a
p
p

Part II

Effect Systems

Chapter 9

Introduction

In the first part of this thesis, we discussed dℓPCF – a family of sound and relatively
complete coeffect-based type systems for complexity analysis.

In dℓPCF, the weight of a typing is a static upper bound on the number of resource
allocations. A resource always has to be used whenever a term is to be (re)evaluated. In
dℓPCFn, this happens at variable lookups (since variables denote suspended computations).
We thus bound the number of variables uses; ‘resources’ are allocated at applications. In
dℓPCFv, a suspended computation is forced upon a function application; we bound the
number of applications and allocate resources at λ-abstractions and recursive functions. In
dℓPCFpv, the same happens whenever a thunked computation is forced. Thus, we bound
how often a thunked computation may be forced, and we allocate at thunk.

In any of these systems, the weight of a closed term is an upper bound for the cost of
its execution, since only these resources may be used that the term allocated itself. The
remaining resources are reserved for potential uses of the term. For example, in dℓPCFn,
the weight of a typing of an abstraction λx. t is just the weight of t – the potential cost of
executing the body is already included in the weight of λx. t. For all dℓPCF systems, we
can thus state the following (informal) equation for typings of closed terms:

weight = actual execution cost + potential cost

If we only know the weight of an arbitrary typing, we cannot determine the actual execu-
tion cost. For example, consider the following dℓPCFpv typing judgements. Both functions
have weight 1, but the second computation needs one forcing step to reduce to λ.

∅; ∅; ∅ ⊢c1 λy. (force (thunk s)) 0 : Nat[⊥] ⊸ FNat[1]

∅; ∅; ∅ ⊢c1 bindx← (force (thunk s)) 0 inλy. returnx : Nat[⊥] ⊸ FNat[1]

One further problem of dℓPCF is that types reveal information about the implementa-
tion of a function. In other words, full abstraction does not hold for dℓPCF: There are
observationally equivalent computations with non-equivalent (precise) types, for example:

∅; k/1; ∅; ∅ ⊢c0 t1 := λx. bind y ← (forcex) 0 in (forcex) y :

[a < 2] · (Nat[if a = 0 then 0 else k(0)] ⊸ Nat[k(a)]) ⊸ Nat[k(1)]

119

∅; k/1; ∅; ∅ ⊢c0 t2 := λx. bindx′ ← returnx in bind y ← (forcex) 0 in (forcex′) y :

[a < 2] · (Nat[if a = 0 then k(1) else 0] ⊸ Nat[k(a)]) ⊸ Nat[k(0)]

Although the type inference algorithm from Chapter 8 will of course compute equivalent
annotations for t1 (thunk s) and t2 (thunk s), the computed recursive equations are different.
Consequently, replacing a program with an equivalent (or more efficient) program requires
the user to simplify the equations again.

The effect-based approach presented in this part of the thesis will solve both problems,
while attaining compositionality at the same time. In dℓPCFn and dℓPCFpv, the weight
of a typing of λx. t is just the weight of the typing of t. However, the cost of λx. t is
zero, since it is already a value. Thus, effect systems assign the empty effect (i.e. 0) to
abstractions. Like simple types (and [< ⊥] types in dℓPCF), df PCF types are non-linear:
We can discard or use a variable arbitrarily often.

Arrow types in df PCF have the shape ∀h⃗. σ K−→ τ , where h⃗ is a vector of index variables
and K is an index term (that may have the variables h⃗ free). The index variables h⃗ may
be used to ‘characterise’ the argument. For example, the function λx. Succ(x) may be

assigned the type ∀i.Nat[i] 0−→ Nat[1 + i]. Thus, if we can type an argument t with type
Nat[I] (where I is some index term), then (λx. Succ(x)) t has type Nat[1 + I]. We can also
type higher-order functions:

λx. x 0 + x 1 : ∀h1 h2. (∀i.Nat[i]
h1(i)−−−→ Nat[h2(i)])

h1(0)+h1(1)−−−−−−−→ Nat[h2(0) + h2(1)]

The higher-order index terms of df PCF (Lfidx) are typed, but, to avoid confusion, we use
the word sort. In the above example, the variables h1 and h2 have the sort Nat→ Nat. In
general, we can have higher-order index terms – in contrast to dℓPCF, where index terms
evaluate to natural numbers (or diverge).

The above scheme can be generalised. We will introduce the notion of effect-para-
metricity in the next chapter.

It is already evident that, if we aim for (relative) completeness, our new higher-order
language of index terms has to be at least as expressive as the language that we want
to type. Consider a function λx. t : ∀i.Nat[i] ·−→ Nat[·]. At the right dot, we need to
write an index term that is equivalent to the λ-abstraction. This means that in order to
annotate a Turing-complete language like PCF with annotations for complexity, we also
need a Turing-complete higher-order language of index terms.

In the next chapter, we first consider the Turing-incomplete language System T. We
will introduce df T, and prove soundness and completeness of df T. Although proving
soundness is almost trivial, the completeness proof needs some effort. There, we will
provide a procedure that takes as input a System T typing and computes an effect-
parametric annotation of this typing in dℓT. Since this generated typing is precise, the gen-
erated refinements will terminate if and only if the term terminates. We will demonstrate
this procedure on several examples, including the Ackermann function. In Chapter 11, we
consider the call-by-push-value variant of PCF.

Chapter 10

An effect system for System T: df T

As in the first part of this thesis, our first effect-based type system, df T, targets System T.
We first define a new language of index terms, Lfidx , based on the call-by-name version of
PCF. We will use the same language in the next chapter, where we generalise the results
to CBPV. We will prove soundness and compositional completeness.

10.1 Index terms (Lf
idx) and constraints

As already discussed in the introduction of this part, the language of index terms must be
at least as computationally expressive as the target language. We define the index term
language Lfidx based on CBN with n-ary tuples and projections (which can of course also
be defined as syntactic sugar using binary tuples). We already include a fixpoint operator
(µx. I) here, which is not needed for df T.

Index terms: I, J, . . . ::= n
∣∣ a ∣∣ λx. I ∣∣ µx. I ∣∣ iter I1 I2 ∣∣ I1 I2 ∣∣ ifz I1 then I2 else I3∣∣ Succ(I)

∣∣ Pred(I)
∣∣ ⟨I1; . . . ; In⟩ ∣∣ πi(I)∣∣ I + J

∣∣ I .− J
∣∣ ∑

a<I J
∣∣ I · J

Constraints: C ::= I ⊑ J
∣∣ I ≡ J

∣∣ I ≤ J
∣∣ I ≳ J

∣∣ I ↓ Sorts: S ::= Nat
∣∣ S → S

Constr. list: Φ := ∅
∣∣ C,Φ Sort contexts: ϕ := ∅

∣∣ a : S, ϕ

Here, n again stands for natural numbers (which we do not underline in Lfidx), and a, b, c
and g, h, i, j, . . . are index variables. The arithmetic operations can be regarded as syn-
tactic sugar. Furthermore, we often use the following syntactic sugar for abstractions and
fixpoints:

λ⟨i1, . . . , in⟩. t := λi. t{π1(i)/i1, . . . , πn(i)/in} µ⟨i1, . . . , in⟩. t := µi. t{π1(i)/i1, . . . , πn(i)/in}

We use standard call-by-name semantics for Lfidx and a simple type system very similar

to CBN, as discussed in Section 2.2.2. To avoid confusion, we use the word sort for Lfidx
types. The symbol ϕ is used for sorting contexts.

The syntax and semantics of constraints is similar to those of Lℓidx . The only difference
is that the constraint < is not included (since it is not needed). Again, we use ≳ in the

Typing rules 121

case distinction rule (in particular for non-precise typings) only.

∃n : Nat. I ⇓ n

⊨ I ↓
∀n : Nat. J ⇓ n⇒ I ⇓ n

⊨ I ⊑ J

⊨ I ⊑ J ⊨ J ⊑ I

⊨ I ≡ J

∀n : Nat. J ⇓ n⇒ ∃m : Nat. I ⇓ m ∧m ≤ n

⊨ I ≤ J

∀n : Nat. J ⇓ n⇒ ∃m : Nat. I ⇓ m ∧m ≥ n

⊨ I ≳ J

Note that constraints are not part of the syntax of Lfidx terms (unlike in Lℓidx). Moreover,
if index terms contain fixpoints, constraints are undecidable in general. Assertions are
defined exactly as in Lℓidx , where val(ϕ) is a substitution that replaces index variables a
with closed index terms of sort ϕ(a) (that do not have to terminate, in contrast to Lℓidx):

⊨ ∅
⊨ C ⊨ Φ

⊨ C,Φ

∀ν ∈ val(ϕ). ⊨ Φν ⇒ ⊨ Cν

ϕ; Φ ⊨ C

We sometimes use set-like notation for tuples of index terms and index variables. A
tuple K⃗ = ⟨K1; . . . ;Kn⟩ is essentially a list of index terms. We write ∅ := ⟨⟩. K ′, K⃗
adds the index term K ′ to the tuple/list K⃗. For example, if K⃗1 = ⟨0; 1⟩ and K⃗2 = ⟨2⟩,
then K⃗1, K⃗2 = ⟨0; 1; 2⟩. Similarly, we can add tuples/lists of index variables h⃗ to a list of
(implicitly sorted) index variables, given that the types of the index variables h⃗ is clear
from the context: h⃗, ϕ := h1, . . . , hn, ϕ. Furthermore, abusing notation, we sometimes
apply an index term to a list or tuple of index terms or variables. For example, M(ϕ)
should be read as M ⟨h1; . . . ;hn⟩ where ϕ = h1 : S1, . . . , hn : Sn. Also abusing notation,
we sometimes write f(i) for f ⟨i⟩ and f() for f ⟨⟩.

10.2 Typing rules

The types of df T are defined inductively according to the following grammar:

Types: σ, τ ::= Nat[I]
∣∣ ∀h⃗. σ I−→ τ

Contexts: Γ ::= ∅
∣∣ x : σ,Γ

In arrows we may introduce a list h⃗ of (implicitly sorted) higher-order index variables.
The two subtyping rules and the typing rules of df T are depicted in Figure 10.1. Two

of the most outstanding differences from dℓT are that we do not need sums of typing
contexts (since df T is not a linear type system) and that λ-abstractions and iterations
have zero cost (because abstractions are values). For readability of the rules, we use an
explicit subsumption rule.

Iteration rule The iteration rule deserves an explanation. We assume that τ may have
the variables h⃗, ϕ free. G is an index term that ‘updates’ the list of index terms h⃗. For
example, if t1 = λx. Succ(t), then h⃗ consists only of a single index variable i, and G

122 An effect system for System T: df T

ϕ; Φ ⊨ I1 ⊑ I2

ϕ; Φ ⊢ Nat[I1] ⊑ Nat[I2]

h⃗, ϕ; Φ ⊨ I1 ≤ I2 h⃗, ϕ; Φ ⊢ σ2 ⊑ σ1 h⃗, ϕ; Φ ⊢ τ1 ⊑ τ2

ϕ; Φ ⊢ ∀h⃗. σ1
I1−→ τ1 ⊑ ∀h⃗. σ2

I2−→ τ2

Sub
ϕ; Φ; Γ ⊢K1 t : σ ϕ; Φ ⊢ σ ⊑ τ ϕ; Φ ⊨ K1 ≤ K2

ϕ; Φ; Γ ⊢K2
t : τ

Const
ϕ; Φ; ∅ ⊢0 n : Nat[n]

Var
ϕ; Φ;x : σ ⊢0 x : σ

Lam
h⃗, ϕ; Φ;x : σ,Γ ⊢K t : τ

ϕ; Φ; Γ ⊢0 λx. t : ∀h⃗. σ K−→ τ

Succ
ϕ; Φ; Γ ⊢M t : Nat[K]

ϕ; Φ; Γ ⊢M Succ(t) : Nat[1 + K]

Pred
ϕ; Φ; Γ ⊢M t : Nat[K]

ϕ; Φ; Γ ⊢M Pred(t) : Nat[K .− 1]

App

ϕ; Φ; Γ ⊢K1 t1 : ∀h⃗. σ K3−−→ τ

ϕ; Φ; Γ ⊢K2
t2 : σ{I⃗/h⃗}

ϕ; Φ; Γ ⊢1+K1+K2+K3{I⃗/h⃗} t1 t2 : τ{I⃗/h⃗}

Ifz
ϕ; Φ; Γ ⊢K1

t1 : Nat[J]
ϕ; 0 ≳ J,Φ; Γ ⊢K2

t2 : τ
ϕ; 1 ≤ J,Φ; Γ ⊢K2

t3 : τ

Φ; Γ ⊢K1+K2 ifz t1 then t2 else t3 : τ

Iter

ϕ; Φ; Γ ⊢M1
t1 : ∀h⃗. τ K−→ τ (⃗h := G(⃗h)) ϕ; Φ; Γ ⊢M2

t2 : τ (⃗h := F)

ϕ; Φ; Γ ⊢0 iter t1 t2 : ∀i : Nat.Nat[i]
i·(2+M1)+M2+

∑
a<i K(h⃗:=iterGF a)−−−−−−−−−−−−−−−−−−−−−−−−→ τ (⃗h := iterGF i)

Figure 10.1: Subtyping and typing rules of df T

increments this variable: G = λ⟨i⟩. ⟨1 + i⟩. The index term F is the ‘base’; for example,
if t2 = 0, then F = ⟨0⟩.

The notation τ (⃗h := F), where F is a tuple or list of closed index terms, means that
we instantiate the index variables h⃗ component-wise:

τ (⃗h := F) := τ{π1(F)/h1, . . . , πn(F)/hn}

Now, the type of iter t1 t2 is ∀i : Nat.Nat[i]
···−→ τ (⃗h := iterGF i). This means, we apply

the ‘step function’ G i-times to the ‘base’ F , where i is the argument given to iter t1 t2.
Note that iter t1 t2 is a value, so the cost is 0. The cost annotation over the arrow is:

i · (2 + M1) + M2 +
∑
a<i

K (⃗h := iterGF a)

We have to pay two steps for each iteration: First for the ‘unrollings’ (iter t1 t2 1 + n ≻1

t1 (iter t1 t2 n)), and the second for the applications. To account for the cost of executing
t1 i-times, we also add i · M1. Finally, we add

∑
a<iK(iter g f a) for the effects of all

applications (after t1 evaluates to a value in each iteration).

Soundness 123

10.3 Soundness

As in dℓPCF, we prove soundness using subject reduction. We prove that the cost decreases
after every β-substitution or iter unfolding step. Thus, the cost of a typing is an upper
bound on the actual execution cost (provided that Φ is empty or tautological).

We can show that values always have cost 0. This is useful if we have a typing that
uses the subsumption rule.

Lemma 10.1 (Retyping values). Let v be a value and ϕ; Φ; Γ ⊢M v : τ . Then we can type
ϕ; Φ; Γ ⊢0 v : τ . Furthermore, if the typing is precise (i.e. subsumption is only used with
≡ instead of ⊑ and ≤), then ϕ; Φ ⊨ M ≡ 0.

Proof (sketch). If there are no uses of the subsumption rule in the typing derivation be-
fore Const, Lam, or Iter, then M is already 0. Otherwise, we just have to modify or
remove these subsumption rules such that they do not increase the cost.

Lemma 10.2 (Substitution). Let ϕ; Φ;x : σ,Γ ⊢M t : τ and ϕ; Φ; ∅ ⊢0 v : σ. Then we can
type ϕ; Φ; Γ ⊢M t{v/x} : τ .

Proof. By induction on the typing of t.

We also need a substitution lemma for index terms.

Lemma 10.3 (Index term substitution). Let h⃗, ϕ; Φ; Γ ⊢cK t : τ and let ν be a valuation

for the (implicitly sorted) index variables h⃗. Then ϕ; Φν; Γν ⊢cKν t : τν.

Proof. By induction on the typing.

Proving subject reduction is routine now.

Theorem 10.4 (Subject reduction of df T). Let ϕ; Φ; ∅ ⊢M t : ρ, and let t ≻i t
′ be a step.

Then there exists an index term M ′ such that ϕ; Φ; ∅ ⊢M ′ t′ : ρ and ϕ; Φ ⊨ M ′ + i ≤M .

Proof (sketch). By induction on the step. We consider the head reduction rules; the
context rules are trivial.

• Case iter t1 t2 1 + n ≻1 t1 (iter t1 t2 n). We first invert the typing of the application
and the constant:

ϕ; Φ; ∅ ⊢K1 iter t1 t2 : ∀i.Nat[i] K3−−→ ρ′ (10.1)

ϕ; Φ; ∅ ⊢K2 1 + n : Nat[1 + n]

ϕ; Φ ⊨ 1 + K1 + K2 + K3{1 + n/i} ≤M

ϕ; Φ ⊢ ρ′{1 + n/i} ⊑ ρ

124 An effect system for System T: df T

Now we invert the typing of iter t1 t2:

ϕ; Φ; ∅ ⊢M1 t1 : ∀h⃗. τ K−→ τ (⃗h := g(⃗h)) (10.2)

ϕ; Φ; ∅ ⊢M2 t2 : τ (⃗h := f) (10.3)

ϕ; Φ ⊢ ∀i : Nat.Nat[i]
i·(2+M1)+M2+

∑
a<i K (⃗h:=iter g f a)−−−−−−−−−−−−−−−−−−−−−−−→ τ (⃗h := iter g f i) ⊑

∀i : Nat.Nat[i]
K3−−→ ρ′

Now it is easy to type the successor term: First, we type

ϕ; Φ; ∅ ⊢1+K1+K2+K3{n/i} iter t1 t2 n : τ (⃗h := iter g f n)

using (10.1) and the rules App and Const. Then we use (10.2) and App to show
the required typing:

ϕ; Φ; ∅ ⊢
1+K1+K2+K3{n/i}+1+K (⃗h:=iter g f n)

t1 (iter t1 t2 n) :

τ (⃗h := iter g f (n + 1)) ⊑ ρ′{1 + n/i} ⊑ ρ

Finally, note that the cost of the above typing can be shown to be less than M .

• Case iter t1 t2 0 ≻1 t2. Similar to the above, we invert the typing of the application.
Equation (10.3) gives us the required typing of t2.

• Case (λx. t) v ≻1 t{v/x}: By inversion, we have:

ϕ; Φ; ∅ ⊢M1 λx. t1 : ∀h⃗. σ K−→ τ ϕ; Φ; ∅ ⊢M2 v : σ(⃗h := I⃗)

ϕ; Φ ⊨ 1 + M1 + M2 + K (⃗h := I⃗) ≤M ϕ; Φ ⊢ τ (⃗h := I⃗) ⊑ ρ.

By inverting the typing of λx. t, we have h⃗, ϕ; Φ;x : σ ⊢K t : τ . With index term
substitution (Lemma 10.3), we get ϕ; Φ;x : σ(⃗h := I⃗) ⊢

K (⃗h:=I⃗)
t : τ (⃗h := I⃗). With

Lemmas 10.1 and 10.2, we finally can type ϕ; Φ; ∅ ⊢
K (⃗h:=I⃗)

t{v/x} : τ (⃗h := I⃗) ⊑ ρ.

• Cases Succ(n) ≻0 1 + n and Pred(n) ≻0 1 + n: trivial.

• The cases ifzn then t1 else t2 ≻0 t1,2 follow by inversion of the typing.

Corollary 10.5 (Subject reduction, multiple steps). Let ϕ; Φ; Γ ⊢cM t : B and t ⇓k t′.
Then ϕ; Φ; Γ ⊢cM−k t′ : B.

Corollary 10.6 (Soundness of df T). Let ∅; ∅; ∅ ⊢k t : τ . Then there exists a number
k′ ≤ k and a value v, such that t ⇓k′ v and ∅; ∅; ∅ ⊢0 v : τ .

Proof (sketch). As in Corollary 7.20, we can prove the existence of k′, v, and ∅; ∅; ∅ ⊢k−k′
v : τ . Then, using Lemma 10.1, we can change the cost of this typing to zero.

Effect parametricity 125

10.4 Effect parametricity

As in Section 8.1, we will present an algorithm that takes as input a simple typing and
annotates it. The main idea is similar to dℓPCF. Instead of parametrising typings over the
arguments of functions, however, we now use quantifiers on the type-level to parametrise
over the refinements of arguments. In this section, we first define effect-parametric types.
Informally, a type τ is (effect-) parametric if the index terms at negative positions of τ
are fully parametrised using quantifiers. For example, the following types are parametric:

• ∀i.Nat[i] K1(i)−−−→ Nat[K2(i)], where K1 and K2 are index terms of sort Nat→ Nat;

• ∀h1 h2 : Nat→ Nat. (∀i.Nat[i] h1(i)−−−→ Nat[h2(i)])
K1⟨h1;h2⟩−−−−−−→ Nat[K2(h2)], where K1 :

(Nat → Nat) × (Nat → Nat) → Nat and K2 : (Nat → Nat) → Nat are higher-order
index terms.

The following type is not parametric, because there is no uniform way of applying a term
of this type:

∀i : Nat.Nat[ifz i then 0 else 1]
0−→ Nat[i]

Note that this type is not inhabited since PCF is deterministic; it is not possible that a
function maps an argument (e.g. 1) to more than one result. There are other non-inhabited

types, like ∀i.Nat[i] 0−→ Nat[i + i] (if we do not extend PCF with primitive addition or
multiplication), but this is not a concern for effect-parametricity.

Recall that in the types of df T, there are two kinds of refinements: The index terms
in Nat[·] and

·−→. In an effect-parametric type, there is always exactly one concrete Nat-
refinement (which is located at the right-most Nat in the type), but there may be many
concrete arrow-refinements.

At negative positions, the index terms are always quantified. For this, we split the
sorting context ϕ into two contexts ϕ1, ϕ2: ϕ1 only contains index variables that are used
for refinements of arrows and ϕ2 only for Nat-refinements. The (unique) Nat-refinement
may depend on variables from ϕ2 but not from ϕ1 (since there is no way to observe costs
within the language).

We define effect-parametricity using two predicates pa−(τ ; h⃗1;h2) and pa+(τ ;ϕ1;ϕ2;
I⃗1; I2). Informally, the first predicate means that the type describes the behaviour of an
argument, and the concrete behaviour is parametrised by the quantified index variables
h⃗1 and h2. For example, the type of x in the context x : Nat[i] is parametrised by the
index variable i. The second predicate means that there are ‘concrete’ annotations at
positive positions in τ that depend on ϕ1 and ϕ2. The index terms in I⃗1 appear above
arrows at positive positions, and I2 is the rightmost Nat annotation. For example, the

type ∀i.Nat[i] I1(i)−−−→ Nat[I2(i)] is parametric, where I1 and I2 are concrete index terms of
sort Nat→ Nat.

126 An effect system for System T: df T

Definition 10.7 (Effect-parametricity). We define using mutual induction:

pa+(Nat[K(ϕ2)] ;ϕ1;ϕ2; ∅;K)

pa−(σ; h⃗1;h2) pa+(τ ; h⃗1, ϕ1;h2, ϕ2; K⃗1;K2)

pa+(∀h⃗1 h2. σ
I (⃗h1,h2,ϕ1,ϕ2)−−−−−−−−−→ τ ;ϕ1;ϕ2; I, K⃗1;K2)

pa−(Nat[i] ; ∅; i)
pa−(σ; k⃗1; k2) pa+(τ ; k⃗1; ⟨k2⟩ ; h⃗1;h2)

pa−(∀k⃗1 k2. σ
k(k⃗1 k2)−−−−−→ τ ; k, h⃗1;h2)

In the arrow rules, h⃗1 and h2 must be fresh index variables.

We say that a type τ is parametrised (over index variables h⃗1, h2) if pa−(τ ; h⃗1;h2).

A type τ is parametric (over lists of index variables ϕ1, ϕ2) if there exists concrete index
terms K⃗1 and K2 such that pa+(τ ;ϕ1;ϕ2; K⃗1;K2).

In the first rule of the definition of pa+, we state that the df T type Nat[K(ϕ2)] is
parametric in ϕ1, ϕ2. K is the only concrete Nat-refinement term, which has the Nat-
refinement variables ϕ2 (but not ϕ1) as arguments.

At negative positions, Nat[i] is parametrised by an index variable i.

In the second rule of pa+, we want to show that a type of shape ∀h⃗1 h2. σ ···−→ τ is
parametric in ϕ1, ϕ2. For this, we use pa− to parametrise σ over the index variables h⃗1
and h2. After this, we use the definition of pa+ on τ , but we add the index variables h⃗1
and h2 to ϕ1 and ϕ2, respectively. I is a new ‘concrete’ index term, which appears over
the arrow, and is applied to the quantifiers and ϕ1, ϕ2. In addition to I, all concrete index
terms of τ are also concrete index terms of the arrow type.

In the arrow rule of pa−, we want to parametrise over the effect annotations h⃗1, h2 of

an arrow type ∀k⃗1 k2. σ
k(k⃗1,k2)−−−−−→ τ . The type σ should of course be parametrised over the

quantified variables k⃗1, k2, which is formalised using the first premise. Furthermore, the
effect annotations of τ must be exactly the index variables h⃗1, h2. This is expressed using
the second premise. Finally, the variable k is added to the arrow annotation variables k⃗1.

Examples The formal definition of effect-parametricity is maybe best understood with
a couple of examples. In Figure 10.2 derivations of pa+ for two complex types are shown.
The shape of the first type is Nat → (Nat → Nat) → Nat, and the shape of the second
type is ((Nat→ Nat)→ Nat)→ Nat.

Properties of effect-parametric types The definition of pa+ entails that the index
terms in effect-parametric types τ are closed. The index terms occurring in τ over arrows
are applications of ‘concrete index terms’ to the index variables ϕ1, ϕ2, and the additional
index variables bound by quantifiers.

Also note that if a type is effect-parametric (in some set of index variables), the concrete
index terms I1 and I⃗2 can be read off the type. Similarly, given a simple System T type
A and index variables ϕ1, ϕ2, it is easy to compute a df T type τ with (|τ |) = A that

Effect parametricity 127

pa
−

(N
at

[i
];
∅;
i)

pa
−

(N
at

[j
];
∅;
j)

pa
+

(N
at

[h
2
(j

)]
;∅

;⟨
j⟩

;∅
;h

2
)

pa
−

(∀
j.
N
at

[j
]

h
1
(j
)

−−
−→

N
at

[h
2
(j

)]
;⟨
h
1
⟩;
h
2
)

pa
+

(N
at

[K
2
(h

2
,i
,ϕ

2
)]

;h
1
,ϕ

1
;h

2
,i
,ϕ

2
;K

2
;∅

)

pa
+

(∀
h
1
h
2
.(
∀j
.N

at
[j

]
h
1
(j
)

−−
−→

N
at

[h
2
(j

)]
)

K
1
2
(h

1
,h

2
,i
,ϕ

1
,ϕ

2
)

−−
−−
−−
−−
−−
−−
→

N
at

[K
2
(h

2
,i
,ϕ

1
)]

;ϕ
1
;i
,ϕ

2
;⟨
K

1
2
⟩;
K

2
)

pa
+

(∀
i.
N
at

[i
]

K
1
1
(i
,ϕ

1
,ϕ

2
)

−−
−−
−−
−−
→
∀h

1
h
2
.(
∀j
.N

at
[j

]
h
1
(j
)

−−
−→

N
at

[h
2
(j

)]
)

K
1
2
(h

1
,h

2
,i
,ϕ

1
,ϕ

2
)

−−
−−
−−
−−
−−
−−
→

N
at

[K
2
(h

2
,i
,ϕ

2
)]

;ϕ
1
;ϕ

2
;⟨
K

1
1
;K

1
2
⟩;
K

2
)

pa
−

(N
at

[i
];
∅;
i)

pa
+

(N
at

[h
2
(i

)]
;∅

;⟨
i⟩

;∅
;h

2
)

pa
−

(∀
i.
N
at

[i
]

h
1
(i
)

−−
−→

N
at

[h
2
(i

)]
;⟨
h
1
⟩;
h
2
)

pa
+

(N
at

[k
2
(h

2
)]

;⟨
h
1
⟩;
⟨h

2
⟩;
∅;
k
2
)

pa
−

(∀
h
1
h
2
.(
∀i
.N

at
[i

]
h
1
(i
)

−−
−→

N
at

[h
2
(i

)]
)

k
1
(h

1
,h

2
)

−−
−−
−−
→

N
at

[k
2
(h

2
)]

;⟨
k
1
⟩;
k
2
)

pa
+

(N
at

[K
2
(k

2
,ϕ

2
)]

;k
1
,ϕ

1
;k

2
,ϕ

2
;∅

;K
2
)

pa
+

(∀
k
1
k
2
.(
∀h

1
h
2
.(
∀i
.N

at
[i

]
h
1
(i
)

−−
−→

N
at

[h
2
(i

)]
)

k
1
(h

1
,h

2
)

−−
−−
−−
→

N
at

[k
2
(h

2
)]

)
K

1
(k

1
,k

2
,ϕ

1
,ϕ

2
)

−−
−−
−−
−−
−−
→

N
at

[K
2
(k

2
,ϕ

2
)]

;ϕ
1
;ϕ

2
;⟨
K

1
⟩;
K

2
)

F
ig

u
re

10
.2

:
E

x
am

p
le

s
of

p
ar

am
et

ri
c

ty
p

es

128 An effect system for System T: df T

is parametrised in some index variables h⃗1 and h2, i.e. pa−(τ ; h⃗1;h2). The number of
quantified index variables is always determined by the structure of the simple type.

Note that pa−(τ ; h⃗1;h2) is essentially equivalent to pa+(τ ; ∅; ∅; h⃗1;h2) – the only differ-
ence is that we need an abstraction in pa+(Nat[(λ⟨⟩. i)⟨⟩] ; ∅; ∅; ∅; i). We use two symbols
to emphasise the different roles of the annotations in negative and positive positions of
types.

10.5 Parametric Completeness

Given a simple System T typing, we can annotate it and thus compute a df T typing with
the same structure. Before we prove our main theorem, we first formally define (effect-)
parametric annotations of a simple typings.

Definition 10.8 (Parametrised type annotation). Let A be a simple type and τ be a df T
type. We say that τ is a parametrised annotation of A over h⃗1, h2, if:

• (|τ |) = A,

• pa−(τ ; h⃗1;h2).

The types in the typing contexts are parametrised over the index variables ϕ1, ϕ2.

Definition 10.9 (Parametrised context annotation). Let ϕ = ϕ1, ϕ2 be index variables.
Let Γ̂ be a simple context and Γ be a df T context. We say that Γ is an (effect-)parametrised
annotation of a simple context Γ̂ (in ϕ1, ϕ2) if:

• For each x in the domain of Γ, there is a distinct index variable hx2 of ϕ2;

• ϕ1 can be partitioned into lists of index variables h⃗x1 for the variables x;

• for every x in Γ, Γ(x) is a parametrised annotation of Γ̂(x) in h⃗x1 , h
x
2 , as in the above

definition.

The df T type derived from a simple typing is parametric in the sort contexts ϕ1, ϕ2:

Definition 10.10 (Parametric annotations of types). Let ϕ = ϕ1, ϕ2 be index variables.
Let A be a simple type and τ be a df T type. We say that τ is an (effect-)parametric
annotation of A (in ϕ1;ϕ2), if:

• (|τ |) = A,

• pa+(τ ;ϕ1;ϕ2; I⃗1; I2) for some index terms I⃗1, I2.

Now, we can state and prove our main theorem.

Theorem 10.11 (Annotating typings). Let Γ̂ ⊢ t : A be a simple System T typing. Let
Γ be any effect-parametrised annotation of Γ̂ (in ϕ = ϕ1, ϕ2). Then we can compute an
effect-parametric annotation ρ of A (in ϕ1, ϕ2), and a closed index term M , together with
a typing ϕ; ∅; Γ ⊢M(ϕ1,ϕ2) t : ρ. Moreover, this typing is precise. (Such a typing is called
an (effect-) parametric annotation of a simple typing.)

Parametric Completeness 129

Proof. By induction on the simple typing.

• Case n; A = Nat. Using Const, we can type

ϕ; ∅; Γ ⊢(λ . 0) (ϕ1,ϕ2) n : Nat[(λ . n) (ϕ1, ϕ2)]

Note that we need the seemingly useless abstractions in order to bring the typing
into the required form.

• Case x; A = Γ̂(x). Note that by the assumption on Γ, we know that Γ(x) is paramet-
rised over index variables h⃗1(x) and h2(x) that are part of ϕ1 and ϕ2, respectively.
We can convert Γ(x) into a type that is parametric over ϕ1, ϕ2 but which is otherwise
equivalent to Γ(x). For this, we only have to introduce abstractions. Then, we can
use Var to type x with this new type.

For example, if Γ = x : Nat[i1] , y : Nat[i2] and ϕ = i1, i2, we type x with type
Nat[(λ⟨i1; i2⟩. i1) ⟨i1; i2⟩].

• Case Succ(t). By the inductive hypothesis, we have:

ϕ; ∅; Γ ⊢K(ϕ1,ϕ2) t : Nat[I(ϕ1, ϕ2)]

Using Succ, we can type:

ϕ; ∅; Γ ⊢K(ϕ1,ϕ2) Succ(t) : Nat[(λ(ϕ1, ϕ2). 1 + I(ϕ1, ϕ2)) (ϕ1, ϕ2)]

• Case Pred(t): as above.

• Case λx. t. We have A = A1 → A2 and x : A1, Γ̂ ⊢ t : A2 for some simple
types A1 and A2. Let h⃗1 and h2 be fresh index variables and let σ be a type
with (|σ|) = A1 such that pa−(σ; h⃗1;h2). Now, observe that x : σ,Γ is a para-
metrised annotation of the PCF context x : A1, Γ̂ (over the index variables h⃗1, ϕ1

and h2, ϕ2). Therefore, we can apply the inductive hypothesis on the PCF typing
x : A1, Γ̂ ⊢ t : A2, which yields a type τ that is an effect-parametric annotation
of A2, and a df T typing h⃗1, ϕ1, h2, ϕ2; ∅;x : σ ⊢

K (⃗h1,ϕ1,h2,ϕ2)
t : τ . Note that the

type ρ := ∀h⃗1 h2. σ
K (⃗h1,ϕ1,h2,ϕ2)−−−−−−−−−→ τ is an effect-parametric annotation of the type

A = A1 → A2, as required. Using rule Lam, we can type ϕ; ∅; Γ ⊢(λ . 0)(ϕ1,ϕ2) λx. t : ρ.

• Case ifz t1 then t2 else t3; we have Γ̂ ⊢ t1 : Nat and Γ̂ ⊢ t2,3 : A. We can apply the
inductive hypothesis on the three typings:

ϕ; ∅; Γ ⊢M1(ϕ1,ϕ2) t1 : Nat[J(ϕ1)]

ϕ; J(ϕ1) = 0; Γ ⊢M2(ϕ1,ϕ2) t2 : τ2

ϕ; 1 ≤ J(ϕ1); Γ ⊢M3(ϕ1,ϕ2) t3 : τ3

Note that the two df T types τ2 and τ3 have the same PCF shape (namely A), but
they may have different annotations. We have to merge τ2 and τ3 to a new df T

130 An effect system for System T: df T

type ρ that is equivalent to either τ2 or τ3 under the constraints J(ϕ1) = 0 or
1 ≤ J(ϕ1), respectively. This type ρ := ifz J(ϕ1) then τ2 else τ3 can be defined as in
Definition 5.33. Now, we can apply the rule Ifz, and together with subsumption,
we can derive the typing:

ϕ; ∅; Γ ⊢(λ(ϕ1,ϕ2).M1(ϕ1,ϕ2)+ifz J(ϕ1) thenM2(ϕ1,ϕ2) elseM3(ϕ1,ϕ2)) (ϕ1,ϕ2) ifz t1 then t2 else t3 : ρ

• Case t1 t2 with Γ̂ ⊢ t1 : B → A and Γ̂ ⊢ t2 : B. The inductive hypotheses yield two
typings:

ϕ; ∅; Γ ⊢K1(ϕ1,ϕ2) t1 : ∀h⃗1 h2. σ
K3 (⃗h1,h2,ϕ1,ϕ2)−−−−−−−−−−→ τ

ϕ; ∅; Γ ⊢K2(ϕ1,ϕ2) t2 : σ′

We know that σ′ has the same shape as σ. We also know that pa−(σ; h⃗1;h2) and
pa+(σ′;ϕ1;ϕ2; I⃗1; I2) for some concrete index terms I⃗1 and I2. We proceed by ‘uni-
fying’ the negative type σ with the positive type σ′. For this, we define a new list
of index terms I∗ such that σ′ is equivalent to σ(⃗h1, h2 := I∗). I∗ roughly is I⃗1, I2,
but with the index variables ϕ1, ϕ2 free. Note that the index terms I⃗1 = I11, . . . , I1n
have different numbers of arguments, which are denoted with dots below:

I∗ :=
〈
λ(· · ·). I11(· · · , h⃗1, h2, ϕ1, ϕ2); . . . ;λ(· · ·). I1n(· · · , h⃗1, h2, ϕ1, ϕ2)

λ(· · ·). I2(· · · , h2, ϕ2);
〉

K∗3 := λ(⃗h1, h2).K3(⃗h1, h2, ϕ1, ϕ2)

Using App, we can now type:

ϕ; ∅; Γ ⊢(λ(ϕ1,ϕ2). 1+K1(ϕ1,ϕ2)+K2(ϕ1,ϕ2)+K∗3 (I
∗))(ϕ1,ϕ2) t1 t2 : τ (⃗h1, h2 := I∗)

However, we are not done yet, since the type τ (⃗h1, h2 := I∗) is not parametric.
The reason is that the index terms are not applications of ϕ1, ϕ2 plus the additional
bound variables. This can be fixed by introducing these abstractions again.

For example, let ϕ = j : Nat and let the type of t1 be ∀i.Nat[i] K1⟨i;j⟩−−−−→ Nat[K2 ⟨i; j⟩],
and let σ′ := Nat[(λ⟨j⟩. j + 1) ⟨j⟩] be the type of t2. Then we can type t1 t2 :
Nat[(λ⟨j⟩.K2 ⟨j1 + 1; j⟩) ⟨j⟩] with cost (λ⟨j⟩. 1 +K1 ⟨j⟩+K2 ⟨j⟩+K3 ⟨j1 + 1; j⟩) ⟨j⟩.

• Case iter t1 t2. We have Γ̂ ⊢ t1 : B → B, Γ̂ ⊢ t2 : B, and A = Nat → B. By the
inductive hypotheses, we can annotate the typings of t1 and t2. The first inductive
hypothesis yields the following effect-parametric typing:

ϕ; ∅; Γ ⊢M1(ϕ1,ϕ2) t1 : ∀h⃗1 h2. σ
K (⃗h1,h2,ϕ1,ϕ2)−−−−−−−−−→ τ

We have pa−(σ; h⃗1;h2) and pa+(τ ; h⃗1, ϕ1;h2, ϕ2; G⃗1;G2) for free index variables
h⃗1, h2 and closed index terms G⃗1, G2.

Parametric Completeness 131

Before we can apply the rule Iter, we first have to do some ‘binder bureaucracy’
since the annotated type of t1 (although it is effect-parametric) is not in the right
shape to apply the iteration rule. We first have to bring the type of t1 into the shape

∀h∗. τ K∗−−→ τ(h∗ := G∗(h∗)), with index terms as defined below.

First, we merge the index variables into a new index variable list: h∗ := h⃗1, h2.
Now, we construct the index term G∗ that takes the tuple h∗ as argument, and has
the index variables ϕ free. Note that the index terms in G⃗1 = ⟨G11; . . . ;G1n⟩ have
different additional parameters apart from h⃗1 and h2. Also, G2 has, in addition to
h2, ϕ2, several (Nat-refinement) index variables as argument. We define the index
term G∗ that takes the tuple of index variables h∗ as argument and returns a tuple
of index terms: As in the application case, we write dots for the additional variables.

G∗ := λ(⃗h1, h2).〈
λ(· · ·). G11(· · · , h⃗1, h2, ϕ1, ϕ2); . . . ;λ(· · ·). G1n(· · · , h⃗1, h2, ϕ1, ϕ2)

〉
λ(· · ·). G2(· · · , h2, ϕ2);

K∗ := λ(⃗h1, h2).K (⃗h1, h2, ϕ1, ϕ2)

For example, if τ = ∀k.Nat[k]
G11(k,h11,h12,h2,ϕ1,ϕ2)−−−−−−−−−−−−−−−→ ∀j.Nat[j] G12(j,k,h11,h12,h1,ϕ1,ϕ2)−−−−−−−−−−−−−−−−→

Nat[G2(j, k, h2, ϕ2)], then:

G∗ = λ⟨h11;h12;h2⟩.〈
λ⟨j; k⟩. G2(j, k, h2, ϕ2);

λ⟨k⟩. G11(k, h11, h12, h1, ϕ1, ϕ2);λ⟨j; k⟩. G12(j, k, h11, h12, h2, ϕ1, ϕ2)
〉

We can now write the typing of t1 as follows:

ϕ; ∅; Γ ⊢M1 t1 : ∀h⃗1 h2. σ
K (⃗h1,h2,ϕ1,ϕ2)−−−−−−−−−→ σ(⃗h1, h2 := G∗(⃗h1, h2))

Note that in the index terms of the right type, the index variables ϕ1, ϕ2 are free;
we will bind these index variables again after applying the iteration rule.

The second inductive hypothesis yields an effect-parametric typing for t2 with a type
σ′ that has the same shape as σ and τ . Similarly to the above, we can extract index
terms F⃗1 and F2, and we define an index term F ∗ such that σ′ can be obtained from
σ by substituting F ∗ for h⃗1, h2.

Using rule Iter, we can now type:

ϕ; ∅; Γ ⊢(λ . 0) (ϕ1,ϕ2) iter t1 t2 : ∀i.Nat[i] M∗(i,ϕ1,ϕ2)−−−−−−−→ σ(⃗h1, h2 := iterG∗ F ∗ i)

with M∗ := λ(i, ϕ1, ϕ2). i·(2+M1(ϕ1, ϕ2))+M2(ϕ1, ϕ2)+
∑

a<iK
∗(iterG∗ F ∗ a). We

are done after we abstract over ϕ1, ϕ2 in all arrow refinement terms (at the positive
positions), and ϕ2 in the rightmost Nat-refinement term.

132 An effect system for System T: df T

In the above example, the final type would be:

∀i.Nat[i] M∗(i,ϕ1,ϕ2)−−−−−−−→
σ
{

(λ(k, ϕ1, ϕ2). π1(iter I
∗ F ∗ i) (k, ϕ1, ϕ2))/h11,

(λ(j, k, ϕ1, ϕ2). π2(iter I
∗ F ∗ i) (j, k, ϕ1, ϕ2))/h12,

(λ(j, k, ϕ2). π3(iter I
∗ F ∗ i) (j, k, ϕ2))/h2

}
Remarks As in the dℓPCFpv annotation algorithm in Section 8.1, the generated typing
is unconstrained. We do not exploit the fact that System T terms terminate. In the next
chapter, we extend the algorithm to CBPV, and since the generated typings are precise,
the generated index terms terminate if and only if the input term terminates.

Consequently, in the ifz case, even if it is certain that only one branch is reach-
able, we also have to annotate the impossible branch. However, we introduce a case
distinction in the index terms. For example, the annotated type for ifz 1 then 2 else 3 is
Nat[ifz 1 then 2 else 3], which is equivalent to Nat[3]. Similarly, to annotate an iteration, we
use index term iteration for the refinement.

10.6 Annotation Examples

In this section, we apply the ‘algorithm’ in the proof of Theorem 10.11 to some arithmetic
functions. We will be less strict regarding the invariant of the algorithm that all index
terms have to be abstractions.

Addition

Recall the definition of addition and multiplication in System T, which we showed in
Section 2.1.4:

s := λx.Succ(x)

add := λx. iter s x

The annotated typing of the successor function s is easy:

i : Nat; ∅;x : Nat[i] ⊢0 x : Nat[i]

i : Nat; ∅;x : Nat[i] ⊢0 Succ(x) : Nat[1 + i]

∅; ∅; ∅ ⊢0 λx.Succ(x) : ∀i : Nat.Nat[i]
0−→ Nat[1 + i]

Note that the definition of add begins with a λ-abstraction, where the parameter has
type Nat. We first annotate the body of this λ-abstraction, where we set ϕ := i : Nat and
Γ := x : Nat[i]. We introduce a fresh index variable k, and we define τ := Nat[k] and the

Annotation Examples 133

following index terms:

G := λ⟨k; i⟩. 1 + k

G∗ := λk.G(k, i) = 1 + k

F := i

K := λ⟨k; i⟩. 0
K∗ := λk.K ⟨k; i⟩
M1 := M2 := λi. 0

M := λ⟨j; i⟩. j · (2 + M1(i)) + M2(i) +
∑
a<j

K∗(iterGFa) = 2 · j

The above typing of s can be rewritten as an effect-parametric typing with i as an
additional index variable (although it is not needed):

i : Nat; ∅;x : Nat[i] ⊢M1(i) s : ∀k : Nat. τ
K⟨k;i⟩−−−−→ τ(k := g(k, i))

This typing needs to be slightly changed again, because the rule Iter requires the type
on the right side of the arrow to be τ(k := g∗(k)). Then, we can type:

i : Nat; ∅;x : Nat[i] ⊢M1(i) s : ∀k : Nat. τ
K⟨k;i⟩−−−−→ τ(k := g∗(k))

i : Nat; ∅;x : Nat[i] ⊢M2(i) x : τ(k := f) = Nat[i]

i : Nat; ∅;x : Nat[i] ⊢(λi. 0) i iter s x : ∀j. τ M⟨j;i⟩−−−−→ τ(k := iterF Gj)

∅; ∅; ∅ ⊢0 add : ∀i.Nat[i] 0−→ ∀j.Nat[j] 2·j−−→ Nat[i + j]

We can apply the functions to two constants m and n:

∅; ∅; ∅ ⊢2+2·n add mn : Nat[m + n]

Multiplication

We can reuse the effect-parametric typing of add to type multiplication. Recall the defin-
ition:

mult := λx. iter (add x) 0

Again, we first have to type the body of the λ-abstraction, which is an iteration. This
time, we use the index variable i : Nat and the variable x : Nat[i] for every iteration.

We first define τ := Nat[k] (where k is a fresh index variable). Using the above typing,
we can type add x:

∅; ∅; ∅ ⊢0 add : ∀i.Nat[i] 0−→ ∀k.Nat[k]
2·k−−→ Nat[i + k] i; ∅;x : Nat[i] ⊢0 x : Nat[i]

i; ∅;x : Nat[i] ⊢M1(i) add x : ∀k. τ K⟨k;i⟩−−−−→ τ(k := g(k, i))

134 An effect system for System T: df T

with the following index terms:

G := λ⟨k; i⟩. i + k

G∗ := λk.G ⟨k; i⟩ = i + k

F := 0

K := λ⟨k; i⟩. 2k
K∗ := λk.K ⟨k; i⟩
M1 := λi. 1

M2 := λi. 0

Now, we can derive:

i; ∅;x : Nat[i] ⊢M1(i) add x : ∀k. τ K∗(k)−−−−→ τ(k := g∗(k))

i; ∅;x : Nat[i] ⊢M2(i) 0 : τ(k := f)

i; ∅;x : Nat[i] ⊢(λi. 0) i iter add 0 : ∀j.Nat[j] M⟨j;i⟩−−−−→ τ(k := iter g f j) = Nat[i · j]

∅; ∅; ∅ ⊢0 mult : ∀i.Nat[i] 0−→ ∀j.Nat[j] M⟨j;i⟩−−−−→ Nat[i · j]
Where the index term M is defined as:

M := λ⟨j; i⟩. j · (2 + M1(i)) + M2(i) +
∑
a<j

K∗(iter g fa) = 3j +
∑
a<j

(2ai) = ij2 − ij + 3j

This means that the cost of mult mn is 2 + mn2 −mn + 3n, which is the same cost that
we derived in Section 4.6.

Ackermann function

The above examples were relatively simple because these functions are all primitive re-
cursive. Now, we will give an annotated typing for the Ackermann function. Recall the
definition:

ack := iter u s

u := λx. iter x (x 1)

One obvious complication is that u itself is a λ-abstraction with an iteration as its
body. We begin to type this inner iteration iter x (x 1).1 Here, the context is Γ := x :

∀j.Nat[j] h1(j)−−−→ Nat[h2(j)], where h1 and h2 are index variables of sort Nat→ Nat.

h1, h2; ∅; Γ ⊢0 x : ∀j.Nat[j] h1(j)−−−→ Nat[h2(j)] h1, h2; ∅; Γ ⊢1+h1(1) x 1 : Nat[h2(1)]

h1, h2; ∅; Γ ⊢0 iter x (x 1) : ∀j.Nat[j] G1(j,h1,h2)−−−−−−−→ Nat[G2(j, h2)]

∅; ∅; ∅ ⊢0 u : ∀h1 h2. (∀j.Nat[j]
h1(j)−−−→ Nat[h2(j)])

0−→ (∀j.Nat[j] G1(j,h1,h2)−−−−−−−→ Nat[G2(j, h2)])

1We have also typed this function in dℓPCFpv; see Example 7 in Section 8.1.1.

Annotation Examples 135

with the following higher-order index terms:

G1 := λ⟨j;h1;h2⟩. j · (2 + 0) + (1 + h1(1)) +
∑
b<j

h1(iter h1 1 (1 + j))

G2 := λ⟨j;h2⟩. iter h2 (h2(1)) j = iter h2 1 (1 + j)

Now, we define τ := ∀j.Nat[j] h1(j)−−−→ Nat[h2(j)], and type:

∅; ∅; ∅ ⊢0 u : ∀h1 h2. τ 0−→ τ(h1, h2 := G∗ ⟨h1;h2⟩) ∅; ∅; ∅ ⊢0 s : τ(h∗ := F)

∅; ∅; ∅ ⊢0 ack : ∀i.Nat[i] K(i)−−−→ τ(h1, h2 := iterG∗ F i)

with the following index terms:

G∗ := λ⟨h1;h2⟩. ⟨G1 ⟨j;h1;h2⟩ ;G2 ⟨j;h2⟩⟩
F := ⟨λk. 0;λk. 1 + k⟩
K := λi. i · (2 + 0) + 0 +

∑
a<i

0 = 2i

If we expand the final type, we get:

∅; ∅; ∅ ⊢0 ack : ∀i.Nat[i] 2i−→ ∀j.Nat[j] π1(iterG∗ F i)−−−−−−−−→ Nat[(π2(iterG
∗ F i))(j)]

It can be shown that π2(iterG
∗ F i j) is equal to the ack i j. We have also implemented

these index terms in Haskell and compared the results with Table 2.1.

Chapter 11

An effect system for
call-by-push-value PCF

In this chapter, we introduce df PCFpv, an effect system for the call-by-push-value variant
of PCF. Since the target language is Turing complete, the annotation algorithm will
produce diverging annotations (only) for diverging timers. We use the same language of

index terms, Lfidx , as in Section 10.1, where we have already included (but not yet used)
the fixpoint operator µx. I.

11.1 Typing rules

The types of df PCFpv are defined using the following grammar. Since we target the call-
by-push-value variant of PCF, there are value types A and computation types B:

Value types: A ::= UI B
∣∣ Nat[I]

Computation types: B ::= FA
∣∣ ∀h⃗. A I−→ B

Contexts: Γ,∆ ::= ∅
∣∣ x : A,Γ

The type constructor U from the simple type system CBPV is annotated with an index
term that stands for the cost of forcing the thunk. Thunked computations can be forced
arbitrarily often and, since CBPV is deterministic, it will always have the same cost. We
also annotate arrows with a static upper bound on the cost of an application.

The typing rules are depicted in Figure 11.1. The subtyping rules (for value and
computation types) can be obtained straightforwardly by extension from the subtyping
rules of df T. Note that value typings are not assigned a cost.

The premise of the rule Fix is ϕ; Φ;x : UK B,Γ ⊢cK t : B, where K is also the cost of
the fixpoint. These costs are always the same, since the cost of µx. t is just the cost of
t{thunkµx. t/x}, which only depends on the context Γ. For example, we have K = 0 if t
is a λ-abstraction. All other rules are not surprising, as they are easy refinements of the
simple CBPV typing rules in Figure 2.5.

Typing rules 137

ϕ; Φ ⊨ I ⊑ J

ϕ; Φ ⊢ Nat[I] ⊑ Nat[J]

ϕ; Φ ⊢ A1 ⊑ A2

ϕ; Φ ⊢ FA1 ⊑ FA2

ϕ; Φ ⊨ K1 ≤ K2 ϕ; Φ ⊢ B1 ⊑ B2

ϕ; Φ ⊢ UK1 B1 ⊑ UK2 B2

h⃗, ϕ; Φ ⊨ I1 ≤ I2
h⃗, ϕ; Φ ⊢ A2 ⊑ A1 h⃗, ϕ; Φ ⊢ B1 ⊑ B2

ϕ; Φ ⊢ ∀h⃗. A1
I1−→ B1 ⊑ ∀h⃗. A2

I2−→ B2

ϕ; Φ ⊢ A1 ⊑ A2

ϕ; Φ ⊢ A2 ⊑ A1

ϕ; Φ ⊢ A1 ≡ A2

ϕ; Φ ⊢ B1 ⊑ B2

ϕ; Φ ⊢ B2 ⊑ B1

ϕ; Φ ⊢ B1 ≡ B2

SubV
ϕ; Φ; Γ′ ⊢v v : A1 ϕ; Φ ⊢ A1 ⊑ A2

ϕ; Φ ⊢ Γ ⊑ Γ′

ϕ; Φ; Γ ⊢v v : A2

SubC
ϕ; Φ; Γ′ ⊢cK1

t : B1 ϕ; Φ ⊢ B1 ⊑ B2

ϕ; Φ ⊢ Γ ⊑ Γ′ ϕ; Φ ⊨ K1 ≤ K2

ϕ; Φ; Γ ⊢cK2
t : B2

Const

ϕ; Φ; ∅ ⊢v n : Nat[n]
Var

ϕ; Φ;x : A ⊢v x : A

Lam

h⃗, ϕ; Φ;x : A,Γ ⊢cK t : B

ϕ; Φ; Γ ⊢c0 λx. t : ∀h⃗. A K−→ B

Fix
ϕ; Φ;x : UK B,Γ ⊢cK t : B

ϕ; Φ; Γ ⊢cK µx. t : B

App

ϕ; Φ; Γ ⊢cK1
t : ∀h⃗. A K2−−→ B ϕ; Φ; Γ ⊢v v : A{h⃗ := I⃗}

ϕ; Φ; Γ ⊢c
K1+K2{h⃗:=I⃗} t v : B{h⃗ := I⃗}

Ifz
ϕ; Φ; Γ ⊢v v : Nat[J]

ϕ; 0 ≳ J,Φ; Γ ⊢cK t1 : τ
ϕ; 1 ≤ J,Φ; Γ ⊢cK t2 : τ

ϕ; Φ; Γ ⊢K ifz v then t1 else t2 : τ

Succ
ϕ; Φ; Γ ⊢v v : Nat[J]

ϕ; Φ;x : Nat[1 + J] ,Γ ⊢cK t : B

ϕ; Φ; Γ ⊢cK calcx← Succ(v) in t : B

Pred
ϕ; Φ; Γ ⊢v v : Nat[J]

ϕ; Φ;x : Nat[J .− 1] ,Γ ⊢cK t : B

ϕ; Φ; Γ ⊢cK calcx← Pred(v) in t : B

Return
ϕ; Φ; Γ ⊢v v : A

ϕ; Φ; Γ ⊢c0 return v : FA

Bind
ϕ; Φ; Γ ⊢cK1

t1 : FA ϕ; Φ;x : A,Γ ⊢cK2
t2 : B

ϕ; Φ; Γ ⊢cK1+K2
bindx← t1 in t2 : B

Thunk
ϕ; Φ; Γ ⊢cK t : B

ϕ; Φ; Γ ⊢v thunk t : UK B

Force
ϕ; Φ; Γ ⊢v v : UK B

ϕ; Φ; Γ ⊢c1+K force v : B

Figure 11.1: Typing rules of df PCFpv

138 An effect system for call-by-push-value PCF

11.2 Soundness

The soundness proof of df PCFpv by now is pure routine; we proceed in the same way as
in df T.

Lemma 11.1 (Substitution). Let ϕ; Φ;x : A,Γ ⊢cM t : B and ϕ; Φ; ∅ ⊢v v : A. Then we
can type ϕ; Φ; Γ ⊢M t{v/x} : B.

Proof. We prove the lemma (and the analogous statement for value typings) by mutual
induction on the typings.

Lemma 11.2 (Index term substitution). Let h⃗, ϕ; Φ; Γ ⊢cK t : B and let ν be a valuation

for the (implicitly typed) index variables h⃗. Then ϕ; Φν; Γν ⊢cKν t : Bν.

Proof. By induction on the typing.

Theorem 11.3 (Subject reduction of df PCFpv). Let ϕ; Φ; ∅ ⊢cM t : B, and let t ≻i t
′ be a

step. Then there exists an index term M ′ such that ϕ; Φ; ∅ ⊢cM ′ t′ : B and ϕ; Φ ⊨ M ′+ i ≤
M .

Proof. By induction on the step. We consider the head reduction rules; reductions under
contexts are trivial.

• Case (λx. t) v ≻0 t{v/x}: By inversion, we have:

ϕ; Φ; ∅ ⊢cK1
λx. t1 : ∀h⃗. A K2−−→ B′ ϕ; Φ; ∅ ⊢v v : A(⃗h := I⃗)

ϕ; Φ ⊨ 1 + K1 + K2(⃗h := I⃗) ≤M ϕ; Φ ⊢ B′(⃗h := I⃗) ⊑ B.

By inverting the typing of λx. t, we have h⃗, ϕ; Φ;x : A ⊢cK2
t : B′. With index term

substitution (similar to Lemma 10.3), we get ϕ; Φ;x : A(⃗h := I⃗) ⊢c
K2 (⃗h:=I⃗)

t : B′(⃗h :=

I⃗). With the substitution lemma (Lemma 11.1), we can type ϕ; Φ; ∅ ⊢c
K2 (⃗h:=I⃗)

t{v/x} : B′(⃗h := I⃗) ⊑ B.

• Case µx. t ≻0 t{thunkµx. t/x}. By inversion of the typing, we get:1 ∅; ∅;x : UM B ⊢cM
t : B. To prove ϕ; Φ; ∅ ⊢cM t{thunkµx. t/x} : B, we use substitution. With Thunk,
it suffices to show ϕ; Φ; ∅ ⊢cM µx. t : B, which was our assumption.

• Case force (thunk t) ≻1 t. By inverting the typing, we get: ϕ; Φ; ∅ ⊢v thunk t : UM ′ B
and ϕ; Φ ⊨ 1 + M ′ ≤M . The goal follows by inverting the above typing of thunk t.

• Case bindx← return v in t ≻0 t{v/x}. By inversion, we get: ϕ; Φ; ∅ ⊢cM1
return v : FA

and ϕ; Φ;x : A ⊢cM2
t : B. By inverting the typing of return v, we get ϕ; Φ; ∅ ⊢v v : A.

By substitution, we can type ϕ; Φ; ∅ ⊢cM2
t{v/x} : B.

1If the typing used subsumption, it could also be that there is a weaker type in the context: x : UM′ B′

with ϕ; Φ ⊨ M ≤ M ′ and ϕ; Φ ⊢ B ⊑ B′. However, we can arrive at the typing of t that follows this
footnote after applying subsumption again.

Soundness 139

• Cases calcx ← Succ(n) in t ≻0 t{1 + n/x} and calcx ← Pred(n) in t ≻0 t{n .− 1/x}:
As the above case.

• The cases ifzn then t1 else t2 ≻0 t1,2 follow by inversion of the typing.

Corollary 11.4 (Soundness of df PCFpv). Let ∅; ∅; ∅ ⊢ck t : B. Then there exists a number
k′ ≤ k and a terminal computation T , such that t ⇓k′ T and ∅; ∅; ∅ ⊢ck−k′ T : B.

Corollary 11.5 (Soundness of df PCFpv). Let ∅; ∅; ∅ ⊢ck t : FA. Then there exists a number
k′ ≤ k and a value v, such that t ⇓k′ return v and ∅; ∅; ∅ ⊢v v : A.

It is important to note that we have to assume that the cost of the typing is a constant
(or equivalently, a terminating index term). If the cost is diverging/undefined, we cannot
derive from the typing whether the computation terminates or diverges.

If a typing of a program has a constant cost, we can show that the Nat-refinement
index term is also terminating:

Corollary 11.6 (Soundness of df PCFpv programs). Let ∅; ∅; ∅ ⊢ck t : FNat[I]. Then there
exists a number k′ ≤ k and a constant n, such that t ⇓k′ returnn and ϕ; Φ ⊨ I = n.

Proof. With Corollary 11.5, we get a value v with ∅; ∅; ∅ ⊢v v : Nat[I]. By inversion, we
have v = n and ∅; ∅ ⊨ I = n.

Moreover, if we assume a precise typing, it is easy to show that the cost of a typing is
precisely the cost of executing the computation. This also implies that if a computation
terminates, the cost of the precise typing also has to terminate.

Lemma 11.7 (Subject reduction for precise typings). Let ϕ; Φ; ∅ ⊢cK t : B be a precise
typing, and let t ≻i t

′ be a step. Then there exists an index term K ′ such that ϕ; Φ; ∅ ⊢cK′
t′ : B is a precise typing and ϕ; Φ ⊨ K ′ + i ≡ K.

Proof (sketch). As in Theorem 11.3. Replace ≤ and ⊑ with ≡.

Lemma 11.8. Let ϕ; Φ; Γ ⊢cK T : B be a precise typing of a terminal computation. Then
ϕ; Φ ⊨ K ≡ 0.

Corollary 11.9 (Adequacy). Assume a precise typing ∅; ∅; ∅ ⊢cK t : B. Also assume that
t ⇓k T . Then ϕ; Φ ⊨ K ≡ k.

Proof. By repeatedly applying Lemma 11.7 on the precise typing, we get a typing for
the terminal computation T : ∅; ∅; ∅ ⊢K′ T : B with ϕ; Φ ⊨ K ′ + k ≡ K. (As in the
proof of Corollary 7.20, this procedure is well-founded, since there are exactly k forcing
steps and the size of t decreases after every other step.) This typing is also precise, since
subject reduction preserves precision. By Lemma 11.8, we have ϕ; Φ ⊨ K ′ ≡ 0 and hence
ϕ; Φ ⊨ K ≡ k.

140 An effect system for call-by-push-value PCF

11.3 Semantic soundness

In the previous section, we have proved a strong version of subject reduction. It not only
entails type safety, but we can also prove normalisation: If the cost of a computation typing
is defined, Corollary 11.4 states that the computation terminates. Subject reduction also
implies that the cost of a typing of a terminating program is also terminating, and so is
its Nat refinement.

Soundness of type systems is usually shown using (unary) logical relations. In the
fixpoint case, however, our reasoning would be circular. This problem is usually remedied
by using step indexing. However, it is not known to us whether step indexing can also be
used to show that well-typed terms terminate. Nevertheless, we can still prove semantic
soundness – as a corollary of subject reduction.

Definition 11.10 (Semantic typing). Let val(ϕ) denote the set of valuations of a sorting
context ϕ. We define the sets of closed terms V[[A]], T[[B]], C[[B]]K by mutual induction on
the shape of the types. As an invariant, we assume that the types are closed.

V[[Nat[I]]] :=
{
n
∣∣ I ⇓ n ∨ I ̸⇓

}
V[[UK B]] :=

{
thunk t

∣∣ t ∈ C[[B]]K
}

T[[FA]] :=
{
return v

∣∣ v ∈ V[[A]]
}

T[[∀h⃗. A K−→ B]] :=
{
λx. t

∣∣ ∅ ⊢c λx. t : (|A→ B|) ∧ ∀ν ∈ val (⃗h).∀v ∈ V[[Aν]]. t{v/x} ∈ C[[Bν]]Kν

}
C[[B]]K :=

{
t
∣∣ ∅ ⊢c t : (|B|) ∧ ∀k.K ⇓ k ⇒ ∃T k′. t ⇓k′ T ∧ k′ ≤ k ∧ T ∈ T[[B]]

}
G[[Γ]] :=

{
γ
∣∣ ∀(x : A) ∈ Γ. γ(x) ∈ V[[A]]

}
G[[Γ]] assigns a term substitution to a context. We now define semantic subtypings and

typings and prove semantic soundness:

ϕ; Φ ⊨v A1 ⊑ A2 := (|A1|) = (|A2|) ∧ ∀ν ∈ val(ϕ). ⊨ Φν ⇒ V[[A1ν]] ⊆ V[[A2ν]]

ϕ; Φ ⊨v B1 ⊑ B2 := (|B1|) = (|B2|) ∧ ∀ν ∈ val(ϕ). ⊨ Φν ⇒ T[[B1ν]] ⊆ T[[B2ν]]

ϕ; Φ; Γ ⊨v v : A := (|Γ|) ⊢v v : (|A|) ∧ ∀ν ∈ val(ϕ). ⊨ Φν ⇒ ∀γ ∈ G[[Γ]]. vγ ∈ V[[Aν]]

ϕ; Φ; Γ ⊨c
K t : B := (|Γ|) ⊢c t : (|B|) ∧ ∀ν ∈ val(ϕ). ⊨ Φν ⇒ ∀γ ∈ G[[Γ]]. tγ ∈ C[[Bν]]Kν

Lemma 11.11 (Semantic soundness). We prove the following statements:

1. For a closed value v, ∅; ∅; ∅ ⊢v v : A implies v ∈ V[[A]].

2. For a closed terminal computation T , ∅; ∅; ∅ ⊢c0 T : B implies T ∈ T[[B]].

3. For a closed computation t, ∅; ∅; ∅ ⊢cK t : B implies t ∈ C[[B]]K .

Proof. We prove the first two statements by induction on their typings (or on the size of
the terms); the last point is independent.

1. Case analysis on the value typing:

• v = n and A = Nat[I] with ∅; ∅ ⊨ n ⊑ I. Trivial, since (by definition) we either
have that I ⇓ n or I diverges.

Parametric Completeness 141

• Case v = thunk t, A = UK B and ∅; ∅; ∅ ⊢cK t : B: By the inductive hypothesis
(point 2), we have t ∈ T[[B]]. This implies the goal.

2. Case analysis on the typing of the terminal computation T :

• Case T = return v, B = FA, and ∅; ∅; ∅ ⊢v v : A. By the inductive hypothesis
(point 1), we have v ∈ V[[A]]. This implies the goal.

• Case T = λx. t, B = ∀h⃗. A K−→ B′, and ∅; ∅;x : A ⊢cK t : A. Let ν ∈ val (⃗h) and
v ∈ V[[Aν]]. We have to show t{v/x} ∈ C[[Bν]]Kν , as in point 3: Assume that
Kν ⇓ k. By Corollary 11.4, we have that t{v/x} ⇓k′ T for k′ ≤ k steps. By the
inductive hypothesis (point 2), we have T ∈ T[[B]].

3. Let K ⇓ k. By Corollary 11.4, we have that t ⇓k′ T with k′ ≤ k. By point 2, we
have T ∈ T[[B]].

Theorem 11.12 (Semantic soundness for arbitrary typings). For an arbitrary term,
ϕ; Φ; Γ ⊢cK t : B implies ϕ; Φ; Γ ⊨c

K t : B.

For an arbitrary value, ϕ; Φ; Γ ⊢v v : B implies ϕ; Φ; Γ ⊨v v : B.

Proof. Both statements follow from Lemma 11.11, substitution (Lemma 11.1), and index
term substitution (Lemma 11.2).

Note that if we want to prove Theorem 11.12 directly by induction on the typings, we
get stuck in the fixpoint case. It is impossible to prove compatibility of the fixpoint rule
directly:

ϕ; Φ;x : UK B,Γ ⊨c
K t : B

ϕ; Φ; Γ ⊨c
K µx. t : B

11.4 Parametric Completeness

The definitions of parametric and parametrised df PCFpv (value and computation) types
is similar to those in the previous chapter.

142 An effect system for call-by-push-value PCF

Definition 11.13 (Parametricity). We define using mutual induction:

pa+(Nat[K(ϕ2)] ;ϕ1;ϕ2; ∅;K)

pa−(A; h⃗1;h2) pa+(B; h⃗1, ϕ1;h2, ϕ2; K⃗1;K2)

pa+(∀h⃗1 h2. A
I (⃗h1,h2,ϕ1,ϕ2)−−−−−−−−−→ B;ϕ1;ϕ2; I, K⃗1;K2)

pa−(Nat[i] ; ∅; i)
pa−(A; k⃗1; k2) pa+(B; k⃗1; ⟨k2⟩ ; h⃗1;h2)

pa−(∀k⃗1 k2. A
k(k⃗1 k2)−−−−−→ B; k, h⃗1;h2)

pa+(A;ϕ1;ϕ2; K⃗1;K2)

pa+(FA;ϕ1;ϕ2; K⃗1;K2)

pa+(B;ϕ1;ϕ2; K⃗1;K2)

pa+(UI(ϕ1,ϕ2)B;ϕ1;ϕ2; I, K⃗1;K2)

pa−(A; h⃗1;h2)

pa−(FA; h⃗1;h2)

pa−(B; h⃗1;h2)

pa−(UiB; i, h⃗1;h2)

We define parametrised and parametric type annotations analogously to Definition 10.8
and Definition 10.10, respectively:

Definition 11.14 (Parametrised type annotation). Let Â be a simple type and τ be a
df PCFpv (either a value or computation) type. We say that τ is an parametrised annotation

of Â over h⃗1, h2, if (|τ |) = Â and pa−(τ ; h⃗1;h2).

Definition 11.15 (Parametric annotations of types). Let ϕ = ϕ1, ϕ2 be index vari-
ables. Let Â be a simple type and τ be a df PCFpv (either a value or computation)
type. We say that τ is an (effect-)parametric annotation of Â (in ϕ1;ϕ2), if (|τ |) = Â and
pa+(τ ;ϕ1;ϕ2; I⃗1; I2) for some index terms I⃗1, I2.

In df PCFpv, there are two kinds of variables. First, as in df T, variables can be intro-
duced in λ-abstractions and fixpoints. For this kind of variables, we make the types in the
context parametrised, as in df T. The second kind of variables is introduced in the rules
Bind, Succ, and Pred. There, we add a value type to the context that represents the
value of a previous computation. Therefore, the type for this kind of variables is already
parametric. In the variable case of the annotation algorithm below, we have to make a
case distinction over the kind of the variable.

For example, when we annotate the computation λx. calc y ← Succ(x) inλz. y, the final
typing of y has the following shape:

i, j; x : Nat[i] ,︸ ︷︷ ︸
parametrised by i

y : Nat[1 + i] ,︸ ︷︷ ︸
parametric in i

z : Nat[j]︸ ︷︷ ︸
parametrised by j

⊢v y : Nat[1 + i]︸ ︷︷ ︸
parametric in i, j

Definition 11.16 (Context annotation). Let ϕ = ϕ1, ϕ2 be sort contexts. Let Γ̂ be a
simple context and Γ be a df PCFpv context. We say that Γ is an annotation of Γ̂ (in
ϕ1, ϕ2) if:

• Every variable of Γ is labelled either as ‘parametrised’ or as ‘parametric’;

Parametric Completeness 143

• for each parametrised x, there is a distinct index variable h2(x) of ϕ2;

• ϕ1 can be partitioned into lists of index variables h⃗1(x) for the parametrised variables;

• for every parametrised x, Γ(x) is a parametrised annotation of Γ̂(x) in h⃗1(x), h2(x).

• for every parametric x, Γ(x) is parametric in the index variables for the parametric
index variables to the right of x in Γ.

We can now prove the main theorem of this section: For each simple call-by-push-value
typing, there exists a precise df PCFpv annotation.

Theorem 11.17 (Annotating typings). Let Γ be an annotation of a simple context Γ̂ (in
ϕ = ϕ1, ϕ2).

• Let Γ̂ ⊢v v : Â be a simple CBPV typing. Then we can compute a parametric
annotation A of Â (in ϕ1, ϕ2) and a precise value typing ϕ; ∅; Γ ⊢v v : A.

• Let Γ̂ ⊢c t : B̂ be a simple CBPV computation typing. Then we can compute a
parametric annotation B of B̂ (in ϕ1, ϕ2), and a closed index term M , together with
a precise computation typing ϕ; ∅; Γ ⊢cM(ϕ1,ϕ2)

t : B.

(These typings are called parametric annotation of simple (value/computation) typings.)

Proof. By induction on the simple typing.

• The cases constant, application, case distinction, and λ-abstraction are exactly as in
df T (see proof of Theorem 10.11).

• Case v = x. If x is a parametrised variable, we proceed as in df T. Otherwise, Γ(x)
is already parametric in a subset of the index terms ϕ1, ϕ2. We only have to add the
missing abstractions.

• Case v = thunk t. The inductive hypothesis yields an annotated computation typing
ϕ; ∅; Γ ⊢cK(ϕ1,ϕ2,)

t : B. We use Thunk: ϕ; ∅; Γ ⊢v thunk t : UK(ϕ1,ϕ2,)B.

• Case t = return v. Similarly to the above; the inductive hypothesis yields an annot-
ated value typing for v. We only have to apply Return.

• Case t = force v. The inductive hypothesis yields ϕ; ∅; Γ ⊢v v : UK(ϕ1,ϕ2,)B. We
apply Force, which also increments the cost:

ϕ; ∅; Γ ⊢c(λ(ϕ1,ϕ2). 1+K(ϕ1,ϕ2)) (ϕ1,ϕ2)
force v : B

• Case t = bindx ← t1 in t2. We have simple typings Γ̂ ⊢c t1 : F Â and x : Â, Γ̂ ⊢c t2 :
B̂. The first inductive hypothesis yields an annotation ϕ; ∅; Γ ⊢cK1

t : FA. Note that

x : A,Γ is an annotation for Â, Γ̂ (where A is parametric). Thus, we can apply the
inductive hypothesis on the typing of t2, which yields the goal.

144 An effect system for call-by-push-value PCF

• Cases calcx← Succ(v) in t and calcx← Pred(v) in t: As the above case.

• Case µx. t. The simple typing is x : U B̂, Γ̂ ⊢ t : B̂. We parametrise the type of x
using fresh index variables i, h⃗1, h2. The inductive hypothesis yields the following
annotated typing:

ϕ∗ := i, h⃗1, h2, ϕ1, ϕ2;x : UiB1,Γ ⊢cK(ϕ∗) t : B2

We have pa−(B1; h⃗1, h2) and pa+(B2; i, h⃗1, ϕ1;h2, ϕ2; G⃗1;G2). As in the iteration
case, we unify the parametrised type B1 with the parametric type B2. For this, we
first merge the index variables into a new index variable list: h∗ := i, h⃗1, h2. Now,
we construct the index term I that takes the tuple h∗ as argument and has the index
variables ϕ free. The index term I not only ‘updates’ the refinements in B2, but it
also computes the cost of t (which may depend on i). Finally, we apply the fixpoint
operator on this index term:

I := λ(i, h⃗1, h2).〈
K(ϕ∗);

λ(· · ·). G11(· · · , ϕ∗); . . . ;λ(· · ·). G1n(· · · , ϕ∗);
λ(· · ·). G2(· · · , h2, ϕ2)

〉
I∗ := µ(i, h⃗1, h2). I(i, h⃗1, h2)

K∗ := π1(I
∗)

B∗ := B1(i, h⃗1, h2 := I∗)

We can substitute I∗ for h∗ in the inductive hypothesis. Since I∗ is a fixed point
(i.e. I(I∗) ≡ I), this brings the typing into the right shape to apply Fix:

ϕ; ∅;x : UK∗ B
∗,Γ ⊢cK∗ B∗

ϕ; ∅; Γ ⊢cK∗ µx. t : B∗

After making B∗ parametric again (by re-introducing λ-abstractions on ϕ again), we
are done.

11.5 Call-by-value version and embedding of df T

We can derive an effect system for the call-by-value version of PCF, df PCFv. For this, we
take the rules of df T and substitute the iteration rule with the following rule for fixpoints:

Fix
ϕ; Φ; f : τ,Γ ⊢0 λx. t : τ

ϕ; Φ; Γ ⊢0 µfx. t : τ

Using the translation function ·v, we can translate CBV terms to CBPV computations, as
in Section 2.3.4. It is easy to embed df PCFv in df PCFpv. Moreover, we can embed df T in

Annotation examples 145

df PCFv: We only have to introduce iteration in df PCFv as syntactic sugar, as we did in
Section 5.6:

iter t1 t2 := µfx. ifzx then t2 else t1 (f (Pred(x)))

Also, it is easy to show that the rule Iter is admissible in df PCFv:

Proof. Abbreviate K∗ := i·(2+M1)+M2+
∑

a<iK (⃗h := iter g f a) and ρ := ∀i.Nat[i] K∗−−→
τ (⃗h := iter g f i). Then we can derive the following typing:

i, ϕ; i = 0,Φ;x : Nat[i] , f : ρ,Γ ⊢M2 t2 : τ (⃗h := f)

i, ϕ; 0 < i,Φ;x : Nat[i] , f : ρ,Γ ⊢M1
t1 : ∀h⃗. τ K−→ τ (⃗h := g(⃗h))

· · · ⊢1+K∗{i−1/i} f(Pred(x)) : τ (⃗h := iter g f (i− 1))

· · · ⊢2+M1+K∗{i−1/i} t1(f(Pred(x))) : τ (⃗h := iter g f i)

i, ϕ; Φ;x : Nat[i] , f : ρ,Γ ⊢K∗ ifzx then t2 else t1(f(Pred(x))) : τ (⃗h := iter g f i)

ϕ; Φ;x : ρ,Γ ⊢0 λx. ifzx then t2 else t1(f(Pred(x))) : ρ

ϕ; Φ; Γ ⊢0 iter t1 t2 : ρ

11.6 Annotation examples

In this section, we demonstrate the annotation algorithm on a few examples.

Diverging fixpoint

We can type µx. forcex in df PCFpv. For this, we need to introduce two index variables of
sort Nat:

i, j; ∅;x : FNat[j] ⊢c1+j forcex : FNat[j]

∅; ∅; ∅ ⊢cπ1(I∗)
µx. forcex : FNat[π2(I

∗)]

where I∗ := µ⟨i; j⟩. ⟨1 + i; j⟩. Obviously, this index term diverges, and so does the term.

Minimum

We type the minimum function, which is defined as follows:

min := µf. λx. λy. t

t := ifzx then 0 else ifz y then 0 else calcx′ ← Pred(x) in calc y′ ← Pred(y) in t′

t′ := bind z ← (force f)x′ y′ in calc z′ ← Succ(z) in return z′

Note that this function is equivalent to the (unthunked) call-by-value translation of:

µfx. λy. ifzx then 0 else ifz y then 0 else Succ (f (Pred(x)) (Pred(y)))

First, we define the parametrised computation type B with three free index variables:

B := ∀a.Nat[a]
h11(a)−−−−→ ∀b.Nat[b] h12(a,b)−−−−−→ Nat[h2(a, b)]

146 An effect system for call-by-push-value PCF

We also introduce a fresh index variable i and type λx. λy. t with f : UiB in the context.
For this, we proceed as in df T. The following typing, for example, is one of the intermediate
steps:

a, b, i, h11, h12, h2; a > 0; b > 0;x′ : Nat[a− 1] , y′ : Nat[b− 1] , x : Nat[a] , y : Nat[b] ,

f : UiB ⊢1+i+h11(a−1)+h12(a−1,b−1) t
′ : Nat[1 + h2(a− 1, b− 1)]

Note that in the above typing, the types of the variables x′ and y′ are parametric, since
they are binders introduced by Pred. Ultimately, we will arrive at the following typing:

i, h11, h12h,2 ; ∅; f : UiB ⊢π1(I) λx. λy. t : B(i, h11, h12, h2 := I)

with the following index term:

I :=
〈
0;

λa. 0;

λ(a, b). ifz a then 0 else ifz b then 0 else 1 + i + h11(a− 1) + h12(a− 1, b− 1);

λ(a, b). ifz a then 0 else ifz b then 0 else 1 + h2(a− 1, b− 1)⟩
〉

I∗ := µ⟨i;h11;h12;h2⟩. I

Now, we can apply the fixpoint typing rule: ∅; ∅; ∅ ⊢π1(I∗) min : B(h2, i, h11, h12 := I∗).
By solving the recurrences, we can simplify the typing:

∅; ∅; ∅ ⊢0 min : ∀a.Nat[a]
0−→ ∀b.Nat[b] min a b−−−−→ Nat[min a b]

with an implementation of min in Lfidx . This means that if we apply the df PCFpv function
min to two constants n1 and n2 with m = min n1 n2, the computation terminates in
returnm, and the cost (i.e. the number of forcing steps) is 0 + m = m.

11.7 Extensions of dℓPCFpv

In this last section, we discuss two extensions to df PCF.

11.7.1 Conjunctives and disjunctives

As we discussed in Section 7.7, we can trivially extend df PCFpv with conjunctives and
disjunctives. We introduce the following value and computation types:

A ::= · · ·
∣∣ 1

∣∣A1 ⊗A2

∣∣A1 ⊕A2

B ::= · · ·
∣∣B1 M1

&M2
B2

Note that the additive conjunction operator & is refined with two index terms that denote
the cost of either projection. The rules are shown in Figure 11.2.

Extensions of dℓPCFpv 147

Unit

ϕ; Φ; ∅ ⊢v () : 1

MProd
ϕ; Φ; Γ ⊢v v1 : A1 ϕ; Φ; Γ ⊢v v2 : A2

ϕ; Φ; Γ ⊢v (v1; v2) : A1 ⊗A2

LetPair
ϕ; Φ; Γ ⊢v v : A1 ⊗A2

ϕ; Φ;x : A1, y : A2,Γ ⊢cM t : B

ϕ; Φ; Γ ⊢cM let (x; y) := v in t : B

AProd
ϕ; Φ; Γ ⊢cM1

t1 : B1 ϕ; Φ; Γ ⊢cM2
t2 : B2

ϕ; Φ; Γ ⊢c0 ⟨t1; t2⟩ : B1 M1
&M2

B2

Proj
ϕ; Φ; Γ ⊢cM t : B1 M1

&M2
B2

ϕ; Φ; Γ ⊢cM+Mi
πi(t) : Bi

Inl
ϕ; Φ; Γ ⊢v v : A1

ϕ; Φ; Γ ⊢v inl(v) : A1 ⊕A2

Inr
ϕ; Φ; Γ ⊢v v : A2

ϕ; Φ; Γ ⊢v inr(v) : A1 ⊕A2

CaseSum
ϕ; Φ; Γ ⊢v v : A1 ⊕A2 ϕ; Φ;x : A1,Γ ⊢cM t1 : B ϕ; Φ; y : A2,Γ ⊢cM t2 : B

ϕ; Φ; Γ ⊢cM case v [inl(x)⇒ t1 | inr(y)⇒ t2] : B

Figure 11.2: Typing rules for conjunctives and disjunctives for df PCFpv

11.7.2 Polymorphism

Perhaps surprisingly, polymorphism is not supported by df PCF. For example, consider
the following System F typing: Λ.Λ. λf. λx. f x : ∀αβ. (α → β) → (α → β). Depending
on the ‘choice’ of α, we need to parametrise the type of x over a different number of index
variables. For example, we can assign the following df PCFv types to instances of this
function:

∀f1 f2. (∀i.Nat[i]
f1(i)−−−→ Nat[f2(i)])

0−→ (∀i.Nat[i] f1(i)+1−−−−−→ Nat[f2(i)])

∀g11 g12 g2. (∀f1 f2. (∀i.Nat[i]
f1(i)−−−→ Nat[f2(i)])

g11(i,f1,f2)−−−−−−−→ (∀i.Nat[i] g12(i,f1,f2)−−−−−−−→ Nat[g2(i, f2)]))
0−→

(∀f1 f2. (∀i.Nat[i]
f1(i)−−−→ Nat[f2(i)])

1+g11(i,f1,f2)−−−−−−−−−→ (∀i.Nat[i] g12(i,f1,f2)−−−−−−−→ Nat[g2(i, f2)]))

One solution to this problem could be to abstract over sorts, which we leave for future
work.

Part III

Conclusions

Chapter 12

Discussion and conclusions

In this last chapter, we conclude the thesis and discuss related and future work.

12.1 Verification and complexity analysis using (co-)effect-
based type systems

We first discuss and compare the main strengths and weaknesses of our two approaches.

Both dℓPCF and df PCF are families of sound and relatively complete refinement type
systems for verification and complexity analysis of pure functional programs. The com-
pleteness results are relative insofar they depend on sufficiently expressive index term
languages and logics that support them. Moreover, both approaches also support gradual
refinements: The type Nat[⊥] is equivalent to the simple type Nat. This means that one
can choose to omit all or some refinements. Moreover, if one restricts the index term
language to polynomials, the systems could still be used for (strict) polynomial programs
without fixpoints.

Furthermore, we have presented syntax-directed algorithms that take as input simple
typings and compute annotated dℓPCF or df PCF typings. Since the annotated typings
are precise, the computed annotations terminate if and only if the given terms termin-
ate. These algorithms are efficient (polynomial in the size of the derivation tree), but do
not attempt to simplify the generated index terms. This could perhaps be done partly
automatically and partly manually.

We have already discussed some of the shortcomings of dℓPCF in Chapter 3. Summar-
ising again:

• dℓPCF typings are not abstract. Observationally equivalent typings have different
(precise) dℓPCF types. This is a prohibitive issue in practice, since verification
would need to be repeated after program transformations. However, we conjecture
that dℓPCF typings can be made fully abstract. For this, we would need to extend
the systems such that they admit type equalities like [a < 2] ·B ≡ [a < 2] ·B{(if a <

Verification and complexity analysis using (co-)effect-based type systems 151

1 then 1 else 0)/a}. We also need to change the forcing typing rule:

ϕ; Φ; Γ ⊢vK v : [a < I] ·B ϕ; Φ ⊨ I ′ < I

ϕ; Φ; Γ ⊢cK thunk v : B{I ′/a}

• Cost analysis is not possible for higher-order programs. From a given (precise) dℓPCF
typing of a function, we cannot know how many steps a function needs to evaluate
to a λ-abstraction. This is because weights of dℓPCF typings account for the actual
cost of a term plus the cost of the (potential) applications that are permitted by the
typing. We will discuss an easy fix for this below.

• In the fixpoint typing rule, recursion trees are directly encoded using index terms and
the forest cardinality operator. However, reasoning about index terms with forest
cardinalities can be tedious in practice. In particular, this can make it complicated to
simplify typings generated by the annotation algorithm. Yet, for restricted recursive
schemes like (higher-order) iteration, we can derive simpler rules.

• Typing higher-order primitive recursion functions like the Ackermann function is
possible and mechanical. However, the result of the algorithm is not easy to un-
derstand. Applying the df PCF annotation algorithm to the Ackermann function,
however, yields sensible index terms that resemble the Ackermann function.

• One advantage of dℓPCF, however, is that it readily supports polymorphism, as we
discussed in Section 8.2.

Interestingly, the disadvantages of dℓPCF are advantages of df PCF, and vice versa:

• df PCF offers full abstraction (as an easy corollary of the soundness results). Thus,
we can simply replace a sub-program with an observationally equivalent (or more
efficient) sub-program, without the need to simplify index terms again.

• Costs are more expressive than weights in dℓPCF. For all terms of all types, the cost
of a typing is a static upper bound on the actual execution cost.

• Yet, type polymorphism is not readily supported by df PCF.

Call-by-push-value Considering a call-by-push-value variant helped the author to bet-
ter understand the systems. It also yielded technical contributions, since the proofs of
soundness and (relative) completeness for dℓPCFpv are easier. One reason is that dℓPCFv
and dℓPCFn typing rules are composed of multiple parts in dℓPCFpv. For example, the
fixpoint rule in dℓPCFv embeds the fixpoint rule and the thunk rule of dℓPCFpv. Owing
to this, we have to reason about forests instead of only trees.

In hindsight, we should have mechanised dℓPCFpv instead of dℓPCFv, since it would
probably have been easier and the results would have been more general. However, we
devised dℓPCFpv after the mechanisation of dℓPCFv. Nonetheless, the Coq mechanisation
also lead to technical insights that could be carried over to dℓPCFpv (like typing skeletons
and the findSlot function) and also revealed mistakes in the original papers on dℓPCFn [11]
and dℓPCFv [12].

152 Discussion and conclusions

12.2 Combining dℓPCF and df PCF

To address the problem that dℓPCF does not support bounding the cost of a function
(i.e. the number of forcing steps that it needs to reduce to a λ-abstraction), we can
combine dℓPCF with ideas of df PCF. In the combined system, values do not have any
weight (similar to df PCF, where values do not have a cost). The weight of a thunked
computation is annotated using the refinement [a < I]M :

a, ϕ; a < I,Φ; ∆ ⊢cK t : B

ϕ; Φ;
∑

a<I ∆ ⊢v thunk t : [a < I]∑
a<I K

·B
ϕ; Φ; Γ ⊢v v : [a < 1]K ·B

ϕ; Φ; Γ ⊢c1+K force v : B{0/a}

ϕ; Φ; ∆1 ⊢cK t : A ⊸ B ϕ; Φ; ∆2 ⊢v v : A

ϕ; Φ; ∆1 ⊎∆2 ⊢cK t v : B

Modal sums are trivially extended; the weights are just added. Now, for a closed precise
typing ∅; ∅; ∅ ⊢cM t : F ([a < I]K · B), M is the actual cost of t (i.e. the number of forcing
steps that t needs until it returns a thunked computation), and the weight K accounts for
the (potential) costs of the K executions of the resulting thunked computation.

The fact that values have no weight also has another advantage: We can add quanti-
fication over function variables to the type level, as in df PCF. In other words, we do not
have to parametrise typings over function variables, as in Chapter 8.

ϕ; j/n,Σ; Φ; Γ ⊢v v : A

ϕ; Σ; Φ; Γ ⊢v v : ∀j/n.A
The type inference algorithm can be trivially adapted, and polymorphism works as before.

12.3 Other applications of coeffect and effect systems

Coeffect and effect-based type systems have also been applied in domains other than
complexity analysis. For example, [32] discusses a general coeffect calculus based on
monoidal indexed comonads. This calculus can be instantiated, for example to track
implicit parameters (which are similar to POSIX-like environment variables). This work
is generalised in [33], where a coeffect is associated to each variable in the typing context.
Thus, it is possible to bound reuse of variables (like BLL) or track liveness of variables.

Coeffect systems The type system ℓRPCF [8] is similar to dℓPCF. It is parametrised
over a semiring R. Elements of this semiring are used to annotate exponentials. The
language is also parametrised over a set of co-handlers. Typings can also be associated
with a weight, which is used to show semantic soundness. The system can be instantiated
with various concrete structures. For example, one implementation of the abstract struc-
tures can be used for complexity analysis. However, complexity analysis using ℓRPCF is
incomplete, since the system does not refine Nat-types and the fixpoint rule is only an ap-
proximation. Other applications include probabilistic analysis and bounding the number
of look-ahead operations in signal processing (as discussed in [32]).

Other approaches to verification and complexity analysis 153

Effect systems Effect type systems are perhaps better known than coeffect type sys-
tems. For a textbook introduction, see [31, Chapter 5], which discusses, e.g., effect type
systems for control flow analysis and side effects (stores with locations). Effect type sys-
tems are already used in several production-grade programming languages. For example,
Java’s throws annotation is used to track and document which exceptions a method may
raise. Monads are used in pure languages such as Haskell to encapsulate code with side
effects. Monads can be generalised to algebraic effects, which allow the programmer to
define arbitrary effects, like catchable exceptions, non-determinism, and state. Algebraic
effects and handlers have been implemented in systems like Eff [4] and Koka [26]. However,
these systems cannot be used for verification and complexity analysis.

Dependent ML (DML) [39] is a type system similar in spirit to df PCF. It is paramet-
rised over a language of index terms. Thus, the expressiveness can be fine-tuned. The
system has been implemented with an index term language for linear arithmetic and with
length refinements for lists. Unlike df PCF, DML also features guarded types P ⊃ τ and
assertion types P ∧ τ . In order to use a guarded type, one first has to prove the assertion
P . Guarded types and assertion types can be used to express loop invariants. In addition
to universal quantification over index terms, DML also allows existential quantification.
Thus, the type ∃a. a > 0 ∧ List(a) encodes non-empty lists. However, there are no cost
annotations in DML.

Combination of effects and coeffects Effects and coeffects can be combined in mean-
ingful ways. For example, one could consider the combination of bounded variable reuse
and exceptions. Effects are usually modelled using (graded) monads, and, dually, coef-
fects are modelled using (graded) comonads. For example, the paper [17] formalises the
interaction between (graded) effects and coeffects using (graded) distributive laws. They
formalise the framework using denotational semantics based on category theory.

12.4 Other approaches to verification and complexity ana-
lysis

There are also other approaches for verification and/or complexity analysis. We briefly
discuss some of these below.

Program logics Program logics like Hoare logic [20] can be used to certify correctness
of functional and imperative programs. Hoare logics are also relatively complete in the
sense that the systems are complete if one assumes that the underlying theory admits
every true theorem. There are also extensions of Hoare logic which can be used to prove
that programs terminate, and even bound the number of steps that the program needs
to evaluate. Various extensions of Hoare logic are well-suited for verification of ‘real-life’
imperative programming languages. For example, separation logics are used for imperative
language that use a heap. Iris [23] is a generic system for higher-order separation logic
that is implemented in the Coq proof assistant.

154 Discussion and conclusions

Program logics can also be used to certify low-level abstract machines, like Turing
machines. For example, a relational program logic has been used to certify functional
correctness and specify time and space complexity for multi-tape Turing machines in
Coq [15].

Recurrence extraction and simplification The techniques for acquiring complex-
ity bounds from programs that we have discussed in this thesis yield concrete functions.
However, in complexity analysis, one is often interested in asymptotic bounds, e.g. those
expressed using the O(·) notation. Recurrence extraction and simplification are two ortho-
gonal techniques to this end. First, we extract recurrences, e.g. using a syntactic procedure
on a program. For example, this is done in [24], where an algorithm is developed that
extracts recurrences from CBPV computations. Note that this is very similar in spirit to
our df PCFpv annotation algorithm. After retrieving these recurrences, one can compute
the complexity class. One method for this, which is taught in undergraduate computer
science classes, is the master method.

For example, consider a functional implementation of the mergesort function, which
sorts lists of even length:

(* msort : int list -> int list *)

fun msort [] = []

| msort xs = let val (ys, zs) = split xs in

merge (msort ys) (msort zs)

end

where the function merge merges two sorted lists of lengths m and n in m + n steps, and
split splits a list of length 2n into two lists of length n each in n steps. From these
specifications, we can derive the following bounds on the running time of msort, where we
assume that the pattern matching on the list and the recursive calls incur some constant
additional costs:

f(0) := c1

f(2n) := c2 + 2n + 2f(n)

Using the master method, we can conclude that the running time complexity of the al-
gorithm is O(n log(n)), where n is the length of the list.

It should be clear that in order to extract recurrences, we first need to verify some
functional properties and the complexity of auxiliary functions. In particular, we would
not have been able to bound the complexity of the mergesort function without knowing
that split halves the length of the list and takes linear time. Thus, if one uses refinement
type systems, it would have sufficed to refine the type of lists with their lengths.

Amortised complexity analysis Amortisation [37] is an advanced method for com-
plexity analysis, which was initially used to analyse the complexity of stateful data struc-
tures. The basic idea is that instead of considering the worst case running time of op-
erations, one considers the average cost of a sequence of operations. For example, most

Future work 155

operations could be ‘cheap’. In addition to paying for the cheap cost, one pays ahead for
the (few) later costly operations.

Resource aware ML (RaML) [22, 21] is a system for analysing polynomial worst time
complexity of certain resources used by first-order Standard ML programs. The system is
parametrised by a resource model, which permits analysing, e.g., heap usage or running
time. The system is based on amortised analysis. Since the generated constraints are
linear (although the resource bounds are polynomials), they can be automatically solved
by off-the-shelf linear programming solvers.

λ-amor [35] is a coeffect-based type system that combines potentials with monadic cost
effects. It subsumes an univariate version of RaML and dℓPCFn.

In [28], the Iris framework has been used to analyse upper and lower running time
bounds. This has been demonstrated for the union-find data structure, where lower
amortised running time bounds are crucial to showing the efficiency of the data struc-
ture.

Refinement systems Refinement is a top-down approach to verification. One starts
with an abstract specification of a system. Using several refinement stages, one gradually
approaches a concrete implementation. Although the intermediate programs are not ex-
ecutable, one verifies that each stage is a refinement of the above stage. This approach
has been followed in foundational systems. For example, the Isabelle Refinement Frame-
work [25] has been used to implement a certified satisfiability solver [6].

Relational analysis The systems that we have discussed are used to verify properties
about single runs of programs. Relational cost analysis [9, 2] is used to compare execution
costs of different programs or different inputs. In one special case, one could show that a
program has the same running time for inputs of the same size, which is a crucial property
in security and privacy.

12.5 Future work

Although the call-by-name version of the dℓPCFn annotation algorithm has been imple-
mented in OCaml [13], there are still no experimental results. One crucial component that
is missing in this implementation is automated and sound simplification of the generated
index terms. It was proposed in [13] to utilise the Why3 framework [7] to enable a combin-
ation of automated and manual simplification of index terms. However, this integration
has not been fully implemented yet. Our Coq implementation of dℓPCFv, which we discuss
in Appendix B, could serve as an alternative starting point for a verified implementation of
the type inference algorithm. Since we implement index terms using a shallow embedding,
the whole power of Coq could be utilised for a combination of automated and manual
simplification proofs.

Both kinds of systems, dℓPCF and df PCF, could be extended with state and other
effects and coeffects. For example, we could investigate whether we could combine the
ideas of ℓRPCF with dℓPCF, and algebraic effects with df PCF.

Bibliography

[1] Samson Abramsky. Computational interpretations of linear logic. Theor. Comput.
Sci., 111(1&2):3–57, 1993.

[2] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves
Strub. A relational logic for higher-order programs. J. Funct. Program., 29:e16, 2019.

[3] Patrick Baillot, Gilles Barthe, and Ugo Dal Lago. Implicit computational complex-
ity of subrecursive definitions and applications to cryptographic proofs. J. Autom.
Reason., 63(4):813–855, 2019.

[4] Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers.
Log. Methods Comput. Sci., 10(4), 2014.

[5] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg. Pro-
gram extraction from normalization proofs. Stud Logica, 82(1):25–49, 2006.

[6] Jasmin Christian Blanchette, Mathias Fleury, Peter Lammich, and Christoph Weiden-
bach. A verified SAT solver framework with learn, forget, restart, and incrementality.
J. Autom. Reason., 61(1-4):333–365, 2018.

[7] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich.
Why3: Shepherd your herd of provers. In Boogie 2011: First International Workshop
on Intermediate Verification Languages, pages 53–64, Wroc law, Poland, August 2011.
https://hal.inria.fr/hal-00790310.

[8] Alöıs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quant-
itative coeffect calculus. In Zhong Shao, editor, Programming Languages and Sys-
tems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in
Computer Science, pages 351–370. Springer, 2014.

[9] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. Re-
lational cost analysis. In Giuseppe Castagna and Andrew D. Gordon, editors, Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017, pages 316–329. ACM, 2017.

https://hal.inria.fr/hal-00790310

158 Bibliography

[10] Löıc Colson and Daniel Fredholm. System T, Call-by-Value and the Minimum Prob-
lem. Theor. Comput. Sci., 206(1-2):301–315, 1998.

[11] Ugo Dal Lago and Marco Gaboardi. Linear Dependent Types and Relative Com-
pleteness. Logical Methods in Computer Science, 8, 04 2011.

[12] Ugo Dal Lago and Barbara Petit. Linear Dependent Types in a Call-by-Value Scenario
(Long Version). Science of Computer Programming, 84, 07 2012.

[13] Ugo Dal Lago and Barbara Petit. The Geometry of Types (Long Version). 10 2012.

[14] Ewen Denney. Refinement types for specification. In David Gries and Willem P.
de Roever, editors, Programming Concepts and Methods, IFIP TC2/WG2.2,2.3 In-
ternational Conference on Programming Concepts and Methods (PROCOMET ’98)
8-12 June 1998, Shelter Island, New York, USA, volume 125 of IFIP Conference
Proceedings, pages 148–166. Chapman & Hall, 1998.

[15] Yannick Forster, Fabian Kunze, and Maximilian Wuttke. Verified programming of
Turing machines in Coq. In Jasmin Blanchette and Catalin Hritcu, editors, Proceed-
ings of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 114–128.
ACM, 2020.

[16] Timothy S. Freeman and Frank Pfenning. Refinement types for ML. In David S. Wise,
editor, Proceedings of the ACM SIGPLAN’91 Conference on Programming Language
Design and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991,
pages 268–277. ACM, 1991.

[17] Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien Breuvart, and
Tarmo Uustalu. Combining effects and coeffects via grading. In Jacques Garrigue,
Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 476–489. ACM, 2016.

[18] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[19] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A
modular approach to polynomial-time computability. Theor. Comput. Sci., 97(1):1–
66, 1992.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[21] Jan Hoffmann. Types with potential: polynomial resource bounds via automatic amort-
ized analysis. PhD thesis, Ludwig Maximilians University Munich, 2011.

Bibliography 159

[22] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static
determination of quantitative resource usage for higher-order programs. In Manuel V.
Hermenegildo and Jens Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid,
Spain, January 17-23, 2010, pages 223–236. ACM, 2010.

[23] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. Iris from the ground up: A modular foundation for higher-order
concurrent separation logic. J. Funct. Program., 28:e20, 2018.

[24] G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. Recurrence
extraction for functional programs through call-by-push-value. Proc. ACM Program.
Lang., 4(POPL):15:1–15:31, 2020.

[25] Peter Lammich. Automatic data refinement. In Sandrine Blazy, Christine Paulin-
Mohring, and David Pichardie, editors, Interactive Theorem Proving, pages 84–99,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[26] Daan Leijen. Type directed compilation of row-typed algebraic effects. In Giuseppe
Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 486–499. ACM, 2017.

[27] Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2
of Semantics Structures in Computation. Springer, 2004.

[28] Glen Mével, Jacques-Henri Jourdan, and François Pottier. Time credits and time
receipts in iris. In Lúıs Caires, editor, Programming Languages and Systems - 28th
European Symposium on Programming, ESOP 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, volume 11423 of Lecture Notes in Computer
Science, pages 3–29. Springer, 2019.

[29] Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst.
Sci., 17(3):348–375, 1978.

[30] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1997.

[31] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. Springer, 1999.

[32] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: Unified static
analysis of context-dependence. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwi-
atkowska, and David Peleg, editors, Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part II, volume 7966 of Lecture Notes in Computer Science, pages 385–397. Springer,
2013.

160 Bibliography

[33] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: A calculus of
context-dependent computation. In Johan Jeuring and Manuel M. T. Chakravarty,
editors, Proceedings of the 19th ACM SIGPLAN international conference on Func-
tional programming, Gothenburg, Sweden, September 1-3, 2014, pages 123–135. ACM,
2014.

[34] Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput.
Sci., 5(3):223–255, 1977.

[35] Vineet Rajani, Marco Gaboardi, and Jan Hoffmann. A unifying type-theory for
higher-order (amortized) cost analysis. Proc. ACM Program. Lang. (to appear).

[36] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: Reasoning with Multi-
Sorted de Bruijn Terms and Vector Substitutions. 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January
14-15, 2019, 2019.

[37] Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on Al-
gebraic Discrete Methods, 6(2):306–318, 1985.

[38] The Coq Development Team. The Coq proof assistant, version 8.11.0, January 2020.

[39] Hongwei Xi. Dependent ML: An approach to practical programming with dependent
types. J. Funct. Program., 17(2):215–286, 2007.

Appendix A

dℓPCFv Proofs

A.1 Completeness

A.1.1 Parametric Joining

Lemma A.1 (Subtyping and bounded sums). Let I and L be index terms, where c may
be free in I but not in L. Furthermore, a and c may be free in Φ, Γ, and τ .

Define the substitution θ := {a +
∑

d<c L{d/c}/b} that introduces a and c as free
variables.

If a, c, ϕ; a < I, c < L,Φθ ⊢ Aθ ⊑ Bθ, then b, ϕ; b <
∑

c<L I,Φ ⊢ A ⊑ B.

Proof. We define the inverting substitution θ∗ := {π1(f−1(b))/c, π2(f−1(b))/a} with f−1 :=
findSlotc LI. We apply this substitution to the hypothesis and get:

b, ϕ;π2(f
−1(b)) < I{π1(f−1(b))/c}, π1(f−1(b)) < L,Φθθ∗ ⊢ Aθθ∗ ⊑ Bθθ∗

From Lemma 5.39 (2), it follows that:

b, ϕ; b <
∑
c<L

I,Φ ⊨ π2(f
−1(b)) < I{π1(f−1(b))/c} ∧ π1(f

−1(b)) < L ∧ Φθθ∗

Similarly, we have: b, ϕ; b <
∑

c<L I(a),Φ ⊢ Aθθ∗ ≡ A (and the same for B).

Lemma A.2 (Typing and bounded sums). Let θ be defined as above. From a (precise)
typing a, c, ϕ; a < I, b < L,Φθ; Γθ ⊢Mθ t : τθ, we can derive a (precise) typing b, ϕ; b <∑

c<L I,Φ; Γ ⊢M t : τ (with the same skeleton).

Proof. As above.

We can now prove Lemma 5.44:

Let c, ϕ; c < L,Φ; ∅ ⊢M v : ρ be a precise typing. Then there exists a ρ′ with
c, ϕ; c < L,Φ ⊢ ρ ≡ ρ′ and a precise typing ϕ; Φ; ∅ ⊢∑

c<L M v :
∑

c<L ρ′ (with
the same skeleton).

162 dℓPCFv Proofs

Proof. Case analysis on the value. Without loss of generality, we can assume that no
subsumption (≡) was used.

• Case v = n: trivial.

• Case v = λx. t. By inverting the precise typing, we have:

a, c, ϕ; a < I, c < L,Φ;x : σ ⊢K t : τ c, ϕ; c < L,Φ ⊨ I +
∑

a<I K = M

ρ = [a < I] · (σ ⊸ τ)

As in Lemma 5.40, we build a ρ′ and a sum
∑

c<L ρ′: Let θ := {a+
∑

d<c L{d/c}/b}
and θ∗ := {π1(f−1(b))/c, π2(f−1(b))/a} with f−1 := findSlotc LI. Then we define:

A′ := (σ ⊸ τ)θ∗ = σθ∗ ⊸ τθ∗

ρ′ := [a < I] ·A′θ∑
c<L

ρ′ = [b <
∑
c<L

I] ·A′

Furthermore, we have c, ϕ; c < L,Φ ⊢ σθ∗θ ⊸ τθ∗θ ≡ σ ⊸ τ , and the same holds
for K. Thus, we have:

a, c, ϕ; a < I, c < L,Φ;x : σθ∗θ ⊢Kθ∗θ t : τθ∗θ

With Lemma A.2 and Lam, we can type:

b, ϕ; b <
∑

b<L I,Φ;x : σθ∗ ⊢Kθ∗ t : τθ∗

ϕ; Φ; ∅ ⊢∑
c<L I+

∑
b<

∑
c<I L Kθ∗ λx. t : [b <

∑
b<L I] · (σθ∗ ⊸ τθ∗) =

∑
c<L ρ′

Finally, we have:∑
c<L

I +
∑

b<
∑

c<I L

Kθ∗ ≡
∑
c<L

I +
∑
b<L

∑
a<I

Kθ∗θ

≡
∑
c<L

I +
∑
b<L

∑
a<I

K ≡
∑
c<L

(I +
∑
a<I

K) ≡
∑
c<L

M

• Case v = µfx. t. Inverting of the typing yields:

b, c, ϕ; b < H, c < L,Φ; f : [a < I] ·A ⊢J λx. t : [a < 1] ·B (A.1)

a, b, c, ϕ; a < I, b < H, c < L,Φ ⊢ B{0/a, 1 + b + H1/b} ≡ A (A.2)

a, ϕ; a < K,Φ ⊢ B{0/a,H2/b} ≡ C (A.3)

ρ = [a < K] · C H1 :=
a
△
c
I{1 + b + c/b} H2 :=

a
△
b
I

Recall that the term 1 + b + H1 computes the number of the ath child node of the
bth node in the forest described by I (with c < L). H2 is the size of the first a < K

Completeness 163

trees in the forest c < L. The index term I (with c < L as a free index variable)
describes forests consisting of K trees and H nodes. We will join the L forests into
one forest (consisting of

∑
c<LK trees and

∑
c<LH nodes).

We need to define two pairs of inverting substitutions: Let f−1 := findSlotc LK and
g−1 := findSlotc LH. For a′ <

∑
c<LK (i.e. a′ is an index of a tree in the joined

forest, as in the second subtyping premise for C), f−1(a′) computes the number
c < L of the forest in which this tree is located, and the offset a < K of this tree
in that forest. For b′ <

∑
c<LH (i.e. node b′ is a node in the joined forest), g−1(b′)

computes the number c < K of the forest and the offset b < H (i.e. b′ is the bth node
in the cth forest).

θ1 := {a +
∑
d<c

K{d/c}/a′} θ∗1 := {π1(f−1(a′))/c, π2(f−1(a′))/a}

θ2 := {b +
∑
d<c

H{d/c}/b′} θ∗2 := {π1(g−1(b′))/c, π2(g−1(b′))/b}

As in the λ case (but with a′ instead of b), we construct the sum over ρ using θ1:

C ′ := Cθ∗1

ρ′ := [a < K] · C ′θ1∑
c<L

ρ′ = [a′ <
∑
c<L

K] · C ′

As before, we have c, ϕ; c < L,Φ ⊢ ρ′ ≡ ρ, which follows from a, c, ϕ; a < K, c <
L,Φ ⊢ C ≡ Cθ∗1θ1.

The joined forest I∗ := Iθ∗2 has cardinality H∗ ≡ △K∗
b′ I∗ ≡ ∑

c<LH with K∗ :=∑
c<LK.

We state the arguments and premises of the typing of µfx. t and show the premises
one-by-one:

I∗ := Iθ∗2 K∗ :=
∑
c<L

K H∗ :=
∑
c<L

H H∗1 := H1θ
∗
2

H∗2 := (H2 +
∑
d<c

H{d/c})θ∗1

b′, ϕ; b′ < H∗,Φ; f : [a < I∗] ·Aθ∗2 ⊢Jθ∗2 λx. t : Bθ∗2
a, b′, ϕ; a < I∗, b′ < H∗,Φ ⊢ Bθ∗2{0/a, 1 + b′ + H∗1/b

′} ≡ Aθ∗2
ϕ; Φ ⊢ [a′ < K∗] ·Bθ∗2{0/a,H∗2/b′} ≡

∑
c<L ρ′ = [a′ < K∗] · C ′

a, b′, ϕ; a < I∗, b′ < H∗,Φ ⊨ H∗1 ≡
a
△
d
I∗{1 + b′ + d/b′}

a′, ϕ; a′ < K∗ ⊢ H∗2 ≡
a′

△
b′
I∗

ϕ; Φ; ∅ ⊢∑
b′<H∗ Jθ

∗
2
µfx. t :

∑
c<L ρ′

164 dℓPCFv Proofs

– The typing and first subtyping premise follow by applying the substitution θ∗2θ
to all index terms and types in (A.1), (A.2), and then applying Lemma A.2, as
in the lambda case.

– The equation for H∗1 follows by the definition of I∗ and H1.

– The equation for H∗2 is quite intuitive: In order to compute the size of the
first a′ < K∗ forests, (using θ∗1) we first make the decomposition a′ = a +∑

d<cK{d/c} with c < J and a < K. We count the size of the first c forests
(by

∑
d<cH{d/c}) and then add the size of the first a trees in the cth forest

(using H2).

– The last subtyping is a bit more complicated. We need to show:

a′, ϕ; a′ < K∗, Bθ∗2{0/a,H∗2/b′} ≡ C ′ = Cθ∗1

We first apply the substitution θ∗1 to the original subtyping (A.3); by transit-
ivity, it suffices to show:

a′, ϕ; a′ < K∗,Φ ⊢ Bθ∗2{0/a,H∗2/b′}
!≡ B{0/a,H2/b}θ∗1 = B{0/a,H2θ

∗
1/b, π1(f

−1(b′))/c}

It suffices to show that the two substitutions are equal (under the premise
a′ < K∗,Φ). Therefore, we have to show that all free index variables of B (a,
b, c) are replaced by the same index terms. We make a case distinction over
these variables.

∗ Case a: Both substitutions substitute 0 for a.

∗ Case b: We need to show:

a′, ϕ; a′ < K∗,Φ ⊨ π2(g
−1(H∗2)) ≡ π2(g

−1(H2θ
∗
2 +

∑
d<π1(f−1(a′))

H{d/c}))

≡ H2θ
∗
2

∗ Case c: We need to show: a′, ϕ; a′ < K∗,Φ ⊨ π1(g
−1(H∗2)) ≡ π1(f

−1(a′)).
This is similar to the above.

– Finally, we have to show that the weight is correct:∑
b<H∗

Jθ∗2 =
∑

b<
∑

c<L H

Jθ∗2 ≡
∑
c<L

∑
b<H

Jθ∗2θ2 ≡
∑
c<L

∑
b<H

J ≡
∑
c<L

M

A.1.2 Subject Expansion

It follows a technical lemmas that states that we can always change the order of the index
variables in ϕ. It is an instance of the generic index term substitution lemma (Lemma 5.5).
However, for technical reasons, we had to prove this lemmas in Coq separately, as we will
explain in Appendix B.

Completeness 165

Lemma A.3 (Swapping lemma). Let a and b be index variables and let θ be the substitu-
tion {a/b, b/a}. If Φθ; Γθ ⊢Mθ t : τθ @ s, then Φ; Γ ⊢M t : τ @ s.

Proof (sketch). We first prove the converse: If Φ; Γ ⊢M t : τ@s, then Φθ; Γθ ⊢Mθ t : τθ@s.
From this, the goal follows since θ is an involution.

Lemma A.4 (Uniformisation of subtyping). Let ϕ; Φ{n/a} ⊢ σ{n/a} ⊑ σ{n/a} for all
constants n. Then a, ϕ; Φ ⊢ σ ⊑ τ . The same holds for linear types.

Proof. By induction on the shape of the types.

Corollary A.5 (Introducing the constraint a < 1 in a subtyping). Let ϕ; Φ{0/a} ⊢
σ{0/a} ⊑ σ{0/a}. Then a, ϕ; a < 1,Φ ⊢ σ ⊑ τ . The same holds for linear types.

Corollary A.6 (Introducing the constraint a < 1 in a typing). Let ϕ; Φ{0/a}; Γ{0/a}
⊢M{0/a} t : τ{0/a}@ s, then a, ϕ; a < 1,Φ; Γ ⊢M t : τ @ s.

Proof (sketch). The goal follows by induction on the given typing. Note that in the λ
and fixpoint cases, new variables are introduced before a, ϕ, but (formally) the inductive
hypothesis only applies if a is the first index variable in the list of index variables. This
matters if we use de Bruijn indexes to formalise binders in index terms (as we do in our
Coq implementation, see Appendix B). This problem is solved using Lemma A.3.

We can now show the two non-trivial cases of subject expansion.

Lemma A.7 (Subject expansion (λ case)). Let ∅ ⊢ (λx. t) v : (|τ |)@s be a PCF typing and
let s′ be the successor skeleton of this typing. Assume a precise dℓPCFv typing ϕ; Φ; ∅ ⊢M
t{v/x} : τ @ s′. Then we can precisely type ϕ; Φ; ∅ ⊢1+M (λx. t) v : τ @ s.

Proof. First we invert the PCF typing and get:

x : σ̂ ⊢ t : τ̂ @ s1 ∅ ⊢ v : σ̂ @ s2 s = App σ̂ (Lam s1) s2

Thus, s′ = subst(x; t; s1; s2). Converse substitution (Lemma 5.45) yields:

ϕ; Φ;x : σ ⊢N1 t : τ @ s1 ϕ; Φ; ∅ ⊢N2 v : σ @ s2 ϕ; Φ ⊨ N1 + N2 ≡M (|σ|) = σ̂

Let a be a fresh index variable. We type (λx. t) v using Corollary A.6:

ϕ; Φ;x : σ ⊢N1 t : τ @ s1

a, ϕ; a < 1,Φ;x : σ ⊢N1 t : τ @ s1

ϕ; Φ ⊢1+N1 λx. t : [a < 1] · (σ ⊸ τ) @ Lam s1 ϕ; Φ; ∅ ⊢N2 v : σ = σ{0/a}@ s2

ϕ; Φ; ∅ ⊢1+M≡1+N1+N2 (λx. t) v : τ = τ{0/a}@ s

As we did in subject reduction, we can reduce a part of the fixpoint case to the λ case.

Lemma A.8 (Subject expansion (fixpoint case)). Let ∅ ⊢ (µfx. t) v : (|τ |) @ s be a PCF
typing and let s′ be the successor skeleton of this typing. Assume a precise dℓPCFv typing
ϕ; Φ; ∅ ⊢M t{µfx. t/f, v/x} : τ @ s′. Then we can precisely type ϕ; Φ; ∅ ⊢1+M (µfx. t) v :
τ @ s.

166 dℓPCFv Proofs

Proof. We first invert the simple typing:

f : σ̂ → τ̂ ⊢ λx. t : σ̂ → τ̂ @ Lam s1 ∅ ⊢ v : σ̂ @ s2 s = App σ̂ (Fix (Lam s1)) s2

We note that the following skeleton reduces to the same target:

((λx. t{µfx. t/f}) v;App σ̂ (subst(f ;λx. t; Lam s1;Fix (Lam s1))) s2)

≻1 (t{µfx. t/f, v/x}; s′)

Thus, by the λ case (Lemma A.7), we have:

ϕ; Φ; ∅ ⊢1+M (λx. t{µfx. t/f}) v : τ @ App σ̂ (subst(f ;λx. t; Lam s1;Fix (Lam s1))) s2

After inverting this typing, we get (with a as a fresh index variable):

ϕ; Φ; ∅ ⊢N λx. t{µfx. t/f} : [a < 1] · (σ ⊸ τ) @ subst(f ;λx. t; Lam s1;Fix (Lam s1)) (A.4)

ϕ; Φ; ∅ ⊢N ′ v : σ{0/a} = σ @ s2 ϕ; Φ ⊨ N + N ′ = 1 + M

By applying rule App again, it suffices to show:

ϕ; Φ; ∅ ⊢N µfx. t : [a < 1] · (σ ⊸ τ) @ Fix (Lam s1)

Now we can forget everything about v (and s2, N
′) and focus on the fixpoint. By applying

converse substitution on (A.4), we get:

ϕ; Φ; f : σµ ⊢M1 λx. t : [a < 1] · (σ ⊸ τ) @ Lam s1 (A.5)

ϕ; Φ; ∅ ⊢M2 µfx. t : σµ @ Fix (Lam s1) (A.6)

ϕ; Φ ⊨ N = M1 + M2

Because the goal is interesting enough, we continue the proof in the following lemma.

Lemma A.9 (Subject expansion (fix case, part 2)). Assume (A.5) and (A.6). Then:

ϕ; Φ; ∅ ⊢M1+M2 µfx. t : [a < 1] · (σ ⊸ τ) @ Fix (Lam s1)

Proof. The skeletons are not a complication any more; we will leave them out. The general
idea of this proof is that the fixpoint typing in (A.6) already provides a recursion forest
consisting of K trees. We just need to add a root node on top of this forest – the K trees
are the children of this new node.

First, we invert the fixpoint typing:

b, ϕ; b < H,Φ; f : [a < I] ·A,∆ ⊢J λx. t : [a < 1] ·B (A.7)

a, b, ϕ; a < I, b < H,Φ ⊢ B{0/a, 1 + b +

(
a
△
c
I{1 + b + c/b}

)
/b} ⊑ A (A.8)

σµ = [a < K] · C a, ϕ; a < K,Φ ⊢ B{0/a,
a
△
b
I/b} ≡ C ϕ; Φ ⊨ H ≡

K
△
b
I

Completeness 167

We apply rule Fix with the following arguments:

I∗ := ifz b thenK else I{1 + b/b} H∗ := 1 + H K∗ := 1

A∗ := ifz b thenC elseA{1 + b/b} B∗ := ifz b thenσ ⊸ τ elseB{1 + b/b}

We prove both the (sub)typing goals by case distinction on b = 0 (Lemma 5.41).

• Case b = 0. Follows from (A.5).

• Case 1 ≤ b. Follows by substituting 1 + b for b in Equations (A.7) and (A.8).

The final subtyping is trivial:

ϕ; Φ ⊢ [a < 1] ·B∗{0/a,
a
△
b
I∗/b} ≡ [a < 1] · (σ ⊸ τ)

Appendix B

Coq formalisation of dℓPCFv

We have formalised dℓPCFv in the proof assistant Coq [38]. The code can be downloaded
from the following URL:

https://gitlab.mpi-sws.org/FCS/dpcf-public-releases/

We target Coq version 8.11; it has not been ported to later versions of Coq. In this
appendix, we outline the key points of our formalisation and discuss some of its challenges.

B.1 Preliminaries

We make extensive use the dependent type Vector.t X n that stands for lists of length
n. However, Coq’s standard library lacks a lot of useful definitions and lemmas about
vectors. One crucial operation is casting : We can convert a vector Vector.t X m into a
vector Vector.t X n if we can prove that m = n. This operation is called cast in Coq’s
standard library. We often need to reason about equalities of vectors. Since this can be
complicated in the presence of man casting operations, we have implemented a tactic that
reduces the goal into a corresponding goal on (non-dependent) lists.

(* Prepend an element to a vector. Notation: [x ::: xs] *)

Definition cons : ∀ (X : Type) (n : nat), X → Vector.t X n → Vector.t X (S n).

Definition hd : ∀ (X : Type) (n : nat), Vector.t X (S n) → X. (* head element *)

Definition tl : ∀ (X : Type) (n : nat), Vector.t X (S n) → Vector.t X n. (* tail *)

Lemma eta : ∀ (X : Type) (n : nat) (xs : Vector.t X (S n)), xs = hd xs ::: tl xs.

Definition cast : ∀ (X : Type) (m : nat), Vector.t X m →
∀ (n : nat), m = n → Vector.t X n.

B.2 Syntax and semantics of PCF

We use a deep embedding for the syntax of PCF. This means that we define an inductive
data type for PCF terms. To formalise binders and variables, we use de Bruijn indexes.
This means that variables are not represented by names but by natural numbers. The num-
ber denotes how many binders have to be ‘skipped’: For example, µfx. λy. f x (Pred(y))
is encoded as µλ. 2 1 (Pred(0)). Note that fixpoints introduce two binders.

https://gitlab.mpi-sws.org/FCS/dpcf-public-releases/

Syntax and semantics of PCF 169

Formally, terms of PCF are defined using the following inductive type. Values are
implemented as an inductive predicate on terms.

Inductive tm : Type :=

| Var : nat → tm

| Lam : tm → tm

| Fix : tm → tm

| App : tm → tm → tm

| Ifz : tm → tm → tm → tm

| Const : nat → tm

| Pred : tm → tm

| Succ : tm → tm.

Inductive val : tm → Prop :=

| val_lam t : val (Lam t)

| val_fix t : val (Fix t)

| val_const k : val (Const k).

For example, the term λx. λy. ifzx then y else 0 is encoded as Lam (Lam (Ifz (Var 1)

(Var 0) (Const 0))), and µfx.Succ(f (Pred(x))) is written as Fix (Succ (App (Var

1) (Pred (Var 0)))).

To implement substitution, we initially used Autosubst 2 [36], which is a code generator
that implements a parallel substitution function and a simplification tactic. However, we
later switched to naive substitution, which does not avoid variable capturing. This is not
a problem in our setup, since we always substitute closed terms for variables, i.e. we do
not “reduce under binders”.

Naive substitution is implemented as follows. nsubst t x s substitutes the (closed)
term s for every occurrence of the variable with index x in t:

Fixpoint nsubst (t : tm) (x : nat) (s : tm) : tm :=

match t with

| Var y => if Nat.eq_dec x y then s else Var y

| Lam t => Lam (nsubst t (S x) s)

| Fix t => Fix (nsubst t (S (S x)) s)

| App t1 t2 => App (nsubst t1 x s) (nsubst t2 x s)

| Ifz t1 t2 t3 => Ifz (nsubst t1 x s) (nsubst t2 x s) (nsubst t3 x s)

| Const k => Const k

| Pred t => Pred (nsubst t x s)

| Succ t => Succ (nsubst t x s)

end.

The inductive predicate for small steps, written t ≻^κ t', is parametrised by a step kind
κ which can either be β (for β-substitution steps, i.e. cost 1) or ϵ for any other step
(without an associated cost). We also define a predicate t ≻^(k) t' that stands for
sequences of steps with exactly k β-steps. Further, we define an inductive predicate for
big steps that is parametrised by the cost. The proof of the equivalence between these
semantics is standard.

Lemma big_step_to_small_steps (t v : tm) i :

t ⇓(i) v → t ≻^(i) v.

Lemma small_steps_to_big_step (i : nat) (t v : tm) :

t ≻^(i) v → val v → t ⇓(i) v.

170 Coq formalisation of dℓPCFv

B.3 Index terms, constraints, and types

We use a shallow embedding for index terms. This means that we use Coq’s dependently
typed term language (also known as Galina) itself to define index terms and constraints.
This has several advantages:

• We do not have to formalise binders for index terms, since we use Coq’s binders;

• we can use automation tactics like lia to discharge many arithmetic goals;

• since we assume the axiom of functional extensionality, extensionally equal types are
considered equal. For example, we have I1 + I2 = I2 + I1.

However, since all Coq term terminate, this means that all index terms have to be well-
defined. Consequently, we do not support diverging index terms and can thus only type
terminating programs.

Instead of a context ϕ of (named) index variables, we just use a natural number ϕ :

nat. Index terms are defined as functions from vectors of length ϕ to natural numbers.
Constraints are implemented analogusly, and thus the definition of entailments is trivial,
since we simply use Coq’s implications.

(* Index terms with [ϕ] free index variables *)

Definition idx (ϕ : nat) : Set := Vector.t nat ϕ → nat.

(* Constraints with [ϕ] free index variables *)

Definition constr (ϕ : nat) : Type := Vector.t nat ϕ → Prop.

(* Constant index term. Note that [ϕ] is implicit. It will be inferred automatically

from the context where [iConst n] is used. *)

Definition iConst {ϕ} (n : nat) : idx ϕ := fun _ => n.

(* Entailment, written [sem! Φ ⊨ Ψ] *)

Definition entails {ϕ} (Φ : constr ϕ) (Ψ : Vector.t nat ϕ → Prop) :=

∀ xs : Vector.t nat ϕ, Φ xs → Ψ xs.

Types Modal and linear types with ϕ free index variables are defined by mutual induc-
tions. All operations and lemmas on/about types are thus mutually inductive.

(* Linear and modal types *)

Inductive lty (ϕ : nat) : Type :=

| Arr (τ1 : mty ϕ) (τ2 : mty ϕ) : lty ϕ (* Written τ1 ⊸ τ2 *)

with mty (ϕ : nat) : Type :=

| Nat (i : idx ϕ) : mty ϕ
| Quant (i : idx ϕ) (A : lty (S ϕ)) : mty ϕ. (* Written [<i]·A *)

Index term substitution Index term substitution is somewhat complicated. A substi-
tution is a function f that maps an index terms with m free variables to an index term
with n free variables.

Fixpoint subst_lty {m n : nat} (A : lty m) (f : idx m → idx n) { struct A } : lty n :=

match A with

| Arr τ1 τ2 => Arr (subst_mty τ1 f) (subst_mty τ2 f)

end

Index terms, constraints, and types 171

with subst_mty {m n : nat} (τ : mty m) (f : idx m → idx n) { struct τ } : mty n :=

match τ with

| Nat i => Nat (f i) (* Apply [f] to the index term *)

| Quant i A =>

Quant (f i) (* Apply [f] to the index term *)

(subst_lty A (* Recursively apply substitution on [A] *)

(* Here we build a new substitution function of type

[idx (S m) → idx (S n)] using [f : idx m → idx n].

Note that we do not use the [i] from the input [Quant i A] any more. *)

(fun (i' : idx (S m)) (xs : Vector.t nat (S n)) =>

f (fun ys : Vector.t nat m => i' (hd xs ::: ys)) (tl xs)))

end.

We define several classes of substitution functions. For example, the following function
is used to substitute the 0th index variable with an index term i that depends on the other
index variables:

Definition subst_beta_ground_fun {X: Type} {ϕ} (i : idx ϕ) :

(Vector.t nat (S ϕ) → X) → (Vector.t nat ϕ → X) :=

fun (f : Vector.t nat (S ϕ) → X) (xs : Vector.t nat ϕ) => f (i xs ::: xs).

We defined an abstract substitution function, in which we substitute the xth index variable
with a new index term i that introduces y additional variables:

Definition subst_var_beta_fun {X: Type} {ϕ} (x : Fin.t (S ϕ)) (y : nat)

(i : idx (y + (ϕ -' fin_to_nat x))) :

(Vector.t nat (S ϕ) → X) → (Vector.t nat (y + ϕ) → X).

Here -' is a custom variant of the substraction function in which the equality x -' 0

= x holds by conversion. This helps avoiding many uses of cast. We have also defined
substitution functions that swap and clone index variables.

Forest cardinality Since forest cardinality is a partial function and since we use a
shallow embedding for index terms, we define forest cardinality relationally. To this end,
we use the standard technique called fuel. The first-order function forestCard returns
None if the fuel did not suffice. Finally, we define a relation isForestCard and prove
several lemmas about this relation.

(* Auxiliary function ("bind" operation for the option monad) *)

Definition bind_option {A B : Type} : (A → option B) → option A → option B :=

fun f a => match a with | None => None | Some x => f x end.

Fixpoint forestCard (K : nat → nat) (fuel : nat) (j : nat) : option nat :=

match j with

| 0 => Some 0

| S j => match fuel with

| 0 => None

| S fuel => bind_option

(fun x => bind_option

(fun y => Some (S (x + y)))

(forestCard (fun a => K (S (x + a))) fuel j))

172 Coq formalisation of dℓPCFv

(forestCard (fun a => K (S a)) fuel (K 0))

end

end.

Definition isForestCard (K : nat → nat) (j : nat) (x : nat) :=

∃ fuel, forestCard K fuel j = Some x.

B.4 dℓPCFv typing rules

Subtyping Subtyping is defined by mutual induction on modal/linear types:

Inductive sublty {ϕ : nat} (Φ : constr ϕ) : lty ϕ → lty ϕ → Prop :=

| sublty_arr τ1 τ2 σ1 σ2 :

mty! Φ ⊢ σ2 ⊑ σ1 →
mty! Φ ⊢ τ1 ⊑ τ2 →
lty! Φ ⊢ (σ1 ⊸ τ1) ⊑ (σ2 ⊸ τ2)

where "lty! Φ ⊢ A ⊑ B" := (sublty Φ A B)

with submty (ϕ : nat) (Φ : constr ϕ) : mty ϕ → mty ϕ → Prop :=

| submty_Nat (k1 k2 : idx ϕ) :

(sem! Φ ⊨ (fun xs => k1 xs = k2 xs)) →
mty! Φ ⊢ Nat k1 ⊑ Nat k2

| submty_Quant (i j : idx ϕ) (A B : lty (S ϕ)) :

(lty! (fun xs : Vector.t X (S ϕ) => hd xs < j (tl xs) ∧ Φ (tl xs)) ⊢ A ⊑ B) →
(sem! Φ ⊨ fun xs => j xs <= i xs) →
mty! Φ ⊢ Quant i A ⊑ Quant j B

where "mty! Φ ⊢ A ⊑ B" := (submty Φ A B).

We show that subtypings are symmetric and transitive.

Contexts Unlike in our ‘on-paper’ definition of contexts (as lists of type assignments),
we have defined contexts as total mappings of type nat -> mty ϕ, where the number
stands for a de Bruijn index. The contextual definitions, like modal sums and subtyping
over contexts, are parametrised over a term. They are lifted to the free term variables of
that term. We write ctx! t; Φ ⊢ Γ ⊑ Γ' for context subtyping w.r.t. the term t. In
particular, if t is closed, the context subtyping hold vacuously.

We use the notation τ .: Γ for the context that maps 0 to τ and S x to Γ x. Usage of
the axiom of functional extensionality simplifies reasoning about contexts. For example,
we can show η equality for the operation .:.

Definition ctx {ty : Type} := (nat -> ty).

Lemma scons_eta {ty : Type} (Γ : @ctx ty) : Γ = scons (Γ 0) (S >> Γ).

Modal sums Since we use a shallow embedding for index terms, the notion of syntactic
equivalence does not apply. Therefore, we us extensional equivalence.

(* Binary modal sum *)

Definition msum {ϕ} (τ1 τ2 : mty ϕ) (τ : mty ϕ) : Prop :=

match τ1, τ2, τ with

| Nat i, Nat j, Nat k => i = j ∧ j = k

dℓPCFv typing rules 173

| Quant i A, Quant j B, Quant k C =>

A = C ∧ (* A and C are extensionally equal *)

B = lty_shift_add C i ∧ (* B simply is A shifted by i *)

(∀ xs, k xs = i xs + j xs)

| _, _, _ => False (* Incompatible shapes *)

end.

(* Bounded modal sum *)

Definition bsum_Nat {ϕ} (I : idx ϕ) (σ : mty (S ϕ)) (τ : mty ϕ) : Type :=

{ J : idx ϕ | σ = subst_mty (Nat J) (fun f xs => f (tl xs)) ∧ (τ = Nat J) } % type.

Definition bsum_Quant {ϕ} (I : idx ϕ) (σ : mty (S ϕ)) (τ : mty ϕ) : Type :=

∃ST J & A, (* [Type] version of [∃ J A, ...] *)

σ = [<J] · (subst_lty_beta_two (* Implementation of the shift {b +
∑

_{d<a}J{d/c}} *)

A

(fun xs => let b := hd xs in let a := hd (tl xs) in

let xs' := tl (tl xs) in b +
∑

_{d<a} (J (d ::: xs')))) ∧
(τ = [< fun xs =>

∑
_{a < I xs} J (a ::: xs)] · A).

Definition bsum {ϕ} (I : idx ϕ) (σ : mty (S ϕ)) (τ : mty ϕ) : Type :=

bsum_Nat I σ τ + bsum_Quant I σ τ. (* [Type] version of ∨ *)

Bounded sums are defined in the universe Type instead of Prop for technical reasons.

(Sub)typing and substitution The following lemmas could be proved using an axiom
that exploits the parametricity of f. Here, f acts both as a substitution for index terms
(X := nat) and constraints (X := Prop).

Lemma sublty_subst {ϕ1 ϕ2} (f : ∀ {X}, (Vector.t nat ϕ1 → X) → (Vector.t nat ϕ2 → X))

(Φ : constr ϕ1) (A B : lty ϕ1) :

(lty! Φ ⊢ A ⊑ B) → (lty! f Φ ⊢ subst_lty A f ⊑ subst_lty B f)

with submty_subst {ϕ1 ϕ2} (f : ∀ {X}, (Vector.t nat ϕ1 → X) → (Vector.t nat ϕ2 → X))

(Φ : constr ϕ1) (σ τ : mty ϕ1) :

(mty! Φ ⊢ σ ⊑ τ) → (mty! f Φ ⊢ subst_mty σ f ⊑ subst_mty τ f).

Abort. (* Not proved, but these lemmas would follow from the axiom below. *)

Instead of relying on an axiom, we have shown instances of these lemmas (and the cor-
responding typing lemma) for several instances of f. In particular, we derive generic
substitution lemmas using the function subst_var_beta_fun and derive from this in-
stances for concrete values of x and y. We also prove substitution lemmas for swapping
and cloning of index variables. This resulted in a lot of boilerplate code; perhaps using
the axiom would have been a more elegant solution.

Axiom parametricity :

∀ ϕ1 ϕ2 (f : ∀ {X}, ((Vector.t nat ϕ1) → X) → ((Vector.t nat ϕ2) → X)),

∃ g : (Vector.t nat ϕ2) → (Vector.t nat ϕ1),
∀ (X : Type) (i : Vector.t nat ϕ1 → X) (ys : Vector.t nat ϕ2),
f i ys = i (g ys).

Typing rules We define the typing rules as an inductive predicate and declare a nota-
tion. Although the rules are technical, all of them, except the fixpoint rule, are straightfor-
ward translations of the ‘on paper’ typing rules. In the fixpoint case, we assume auxiliary

174 Coq formalisation of dℓPCFv

index terms for the forest cardinalities, using the relation isForestCard. We use a variant
of the typing rules where subsumption is ‘built into’ every rule; subsumption is proved as a
lemma. This simplifies inversion of typings, since we can simply use the tactic inversion.
We give explicit names to the premises, so that inversion automatically takes these
names. With an explicit subsumption rule, we would have to (inductively) prove inversion
lemmas for each rule. We only show some of the typing rules in the listing below.

(* Written [ty! Φ; Γ ⊢(i) t : τ]. Note that [ϕ] is implicit. *)

Inductive hasty {ϕ} (Φ : constr ϕ) (Γ : ctx ϕ) (M : idx ϕ) : tm → mty ϕ → Prop :=

| ty_Var x ρ :

(* Subtyping *)

∀ (Hsub: mty! Φ ⊢ Γ x ⊑ ρ),
(ty! Φ; Γ ⊢(M) (Var x) : ρ)

| ty_Lam (t : tm) (I : idx ϕ) (∆ : ctx (S ϕ)) (σ τ : mty (S ϕ)) (K : idx (S ϕ))
(ρ : mty ϕ) (* The type after subtyping *)

(Γ' : ctx ϕ) : (* The context sum of [∆], before subtyping *)

∀ (Hty: ty! (fun xs => hd xs < I (tl xs) ∧ Φ (tl xs)); (σ .: ∆) ⊢(K) : t τ)
(Hbsum: ctxBSum (Lam t) I ∆ Γ') (* Γ' =

∑
_{a<I}∆ *)

(* Subtyping (The variable x is excluded from the subtyping.) *)

(HΓ: ctx! (Lam t); Φ ⊢ Γ ⊑ Γ')
(HM: sem! Φ ⊨ fun xs => (I xs +

∑
_{a<I xs} K (a ::: xs)) <= M xs)

(Hρ: mty! Φ ⊢ [<I] · σ ⊸ τ ⊑ ρ),
(ty! Φ; Γ ⊢(M) Lam t : ρ)

| ty_App (t1 t2 : tm) (∆1 ∆2 : ctx ϕ) (σ τ : mty (S ϕ)) (K1 K2 : idx ϕ)
(Γ' : ctx ϕ) (* The context sum before subtyping *)

(ρ : mty ϕ) : (* The type after subtyping *)

∀ (Hty1: ty! Φ; ∆1 ⊢(K1) t1 : [<iConst 1] · (σ ⊸ τ))
(Hty2: ty! Φ; ∆2 ⊢(K2) t2 : (subst_mty_beta_ground σ (iConst 0)))

(Hmsum: ctxMSum (App t1 t2) ∆1 ∆2 Γ') (* Γ' = ∆1 ⊎ ∆2 *)

(* Subtyping *)

(HΓ: ctx! (App t1 t2); Φ ⊢ Γ ⊑ Γ')
(HM: sem! Φ ⊨ fun xs => (K1 xs + K2 xs) <= M xs)

(Hρ: mty! Φ ⊢ subst_mty_beta_ground τ (iConst 0) ⊑ ρ),
(ty! Φ; Γ ⊢(M) t1 t2 : ρ)

(* ... *)

B.5 Soundness

We prove soundness in the same way as in the paper. For the same reason as for subtyping,
we could not derive a generic index term substitution lemma. Therefore, we prove substi-
tution lemmas for the same classes of substitutions. The following are the key lemmas:

(* [Γ] is like [Γ'] (for all [m] free variables except [x]) , but it has [x : σ] *)

Definition ctxExtends {ϕ} (Φ : constr ϕ) (Γ : ctx ϕ) (m : nat) (x : nat) (σ : mty ϕ)
(Γ' : ctx ϕ) : Prop :=

(∀ y, y < m → x ̸= y → mty! Φ ⊢ Γ' y ⊑ Γ y) ∧ Γ x = σ.

(* Value substitution lemma *)

Lemma typepres_nsubst {ϕ} (m : nat) (Φ : constr ϕ) (x : nat) (Γ Γ' Σ : ctx ϕ)
(σ : mty ϕ) t τ v (M N : idx ϕ) :

(∀ xs, { Φ xs } + { ¬ Φ xs }) → (* [Φ] is decidable for all valuations *)

Soundness 175

hasty Φ Γ M t τ →
bound m t → (* This means that [t] has no more than [m] free variables *)

(ty! Φ; Σ ⊢(N) v : σ) → (* Σ is an arbitrary context, i.e. "∅" *)

val v → closed v →
ctxExtends Φ Γ m x σ Γ' →
∃ (K : idx ϕ),
hasty Φ Γ' K (nsubst t x v) τ ∧
sem! Φ ⊨ fun xs => K xs <= M xs + N xs.

(* After a beta substitution, the weight decreases by at least one. *)

Lemma preservation_beta {ϕ} (Φ : constr ϕ) (Γ : ctx ϕ) M t τ t' :

(∀ xs, { Φ xs } + { ¬ Φ xs }) →
hasty Φ Γ M t τ →
closed t →
t ≻(β) t' →
∃ N, hasty Φ Γ N t' τ ∧
sem! Φ ⊨ fun xs => N xs < M xs.

(* After a nat computation, the cost doesn't decrease (but the term size) *)

Lemma preservation_nat {ϕ} (Φ : constr ϕ) (Γ : ctx ϕ) M t τ t' :

hasty Φ Γ M t τ →
closed t →
t ≻(ϵ) t' →
hasty Φ Γ M t' τ.

These lemmas are proved by induction on the typing and inversion on the step. Through-
out the subject reduction proof, we need to assume that all valuations of the constraint
Φ are decidable. We need this for technical reasons when we want to ‘split’ a forest car-
dinality △I1+I2

b K into two parts, as in Fact 5.2. Ultimately, we instantiate Φ := fun

xs : Vector.t nat 0 => True (for ϕ := 0), which is obviously decidable. The fixpoint
subject reduction case is the most complicated lemma; we have outlined the proof in
Lemma 5.11. From subject reduction, we easily derive a normalisation theorem.

Theorem normalisation (Γ : ctx 0) (M : idx 0) (t : tm) (τ : mty 0) :

(ty! (fun xs => True); Γ ⊢(M) t : τ) →
closed t → normalising t.

Theorem cost_soundness (Γ : ctx 0) :

∀ t v (i : nat) (N : idx 0) (τ : mty 0),

t ⇓(i) v → closed t →
(ty! (fun xs => True); Γ ⊢(N) t : τ) →
i <= N [||]. (* [||] is the empty vector. N [||] simply evaluates the index term *)

The proposition normalising t is defined as the wellfoundedness of the step relation.
Together with the progress lemma for simple typings (Lemma 2.8), the first theorem entails
that every well-typed term terminates. The second theorem (which is also a corollary of
subject reduction) bounds the number of steps.

176 Coq formalisation of dℓPCFv

B.6 Completeness

The simple PCF typing rules are defined in the universe Prop. However, we need to distin-
guish simple typings by their skeletons. Thus, since proof irrelevance is consistent with the
logic of Coq, we have also defined a Type variant of the simple typing rules, together with
a function PCF.strip that returns the skeleton of the simple typing. (Alternatively, we
could have defined a predicate Γ ⊢ t : A @ s for simple typings.) We have shown that
typings that have the same skeleton are unique (Fact 5.25), but this fact is not needed.

Precise dℓPCFv typings are defined as a separate inductive predicate. For technical
reason (with future work in mind), we defined the predicate in the universe Type. We
write Ty! Φ; Γ ⊢(i) t : τ @ s for a precise typing with skeleton s. The proof scripts
of the index term substitution lemmas have been copy-pasted for precise typings.

The outline for the completeness proof is exactly as we have explained in Section 5.5.
The following are the key lemmas:

(* * Increase the cost [i] if [κ = β], else return [i] *)

Definition costAfter (i : nat) (κ : stepKind) : nat :=

match κ with | β => S i | ϵ => i end.

Theorem subject_expansion {ϕ} (Φ : constr ϕ) (Γ : ctx ϕ) (M : idx ϕ)
(t t' : tm) (κ : stepKind) (s s' : skel)

(ρ : mty ϕ) (ρ_PCF : PCF.ty)

(pcfTy : PCF.hastyT (stripCtx Γ) t ρ_PCF) :

(Ty! Φ; Γ ⊢(M) t' : ρ @ s') →
stepT t κ t' → (* Variant of [t ≻^κ t'] defined in [Type] *)

ρ_PCF = mty_strip ρ → (* the shape of ρ *)

s = PCF.strip pcfTy → (* The skeleton of the simple typing [pcfTy] *)

s' = PCF.skel_red t s → (* The successor skeleton *)

closed t →
∃S (N : idx ϕ),

(Ty! Φ; Γ ⊢(N) t : ρ @ s) ** (* [* *] is the [Type] variant of [∧] *)

(sem! Φ ⊨ fun xs => N xs = costAfter (M xs) κ).

Theorem completeness_for_values {ϕ} (Φ : constr ϕ) (Γ : ctx ϕ)
(t v : tm) (k i : nat) (ρ_PCF : PCF.ty)

(pcfTy : PCF.hastyT (stripCtx Γ) t ρ_PCF) :

starBT' k i t v → (* k steps in total, of which i β steps *)

closed t → val v →
∃S (ρ : mty ϕ),

(Ty! Φ; Γ ⊢(iConst i) t : ρ @ strip pcfTy) **

(Ty! Φ; Γ ⊢(iConst 0) v : ρ @ skel_reds t (strip pcfTy) k) **

mty_strip ρ = ρ_PCF.

Corollary completeness_for_programs {ϕ} (Φ : constr ϕ) (Γ : ctx ϕ)
(t : tm) (n : nat) (k i : nat) (ρ_PCF : PCF.ty)

(pcfTy : PCF.hastyT (stripCtx Γ) t ρ_PCF) :

starBT' k i t (Const n) → closed t →
Ty! Φ; Γ ⊢(iConst i) t : Nat (iConst n) @ strip pcfTy.

(* * Completeness of the non-precise version *)

Corollary completeness_for_programs' {ϕ} (Φ : constr ϕ) (Γ : ctx ϕ) (M : idx ϕ) (t : tm)

Statistics 177

(n : nat) (i : nat) (ρ_PCF : PCF.ty) :

PCF.hastyT (stripCtx Γ) t ρ_PCF → t ≻^(i) (Const n) → closed t →
ty! Φ; Γ ⊢(iConst i) t : Nat (iConst n).

B.7 Statistics

The overall lines of code (counted with the tool coqwc that is part of the Coq distribution)
are shown in Table B.1. In total, one person has been working on the proofs (roughly)
between March and July of 2020.

We have used the following axioms. Functional extensionality is technically not needed,
but it simplified the development. The axiom JMeq.JMeq_eq was automatically used in
tactic for dependent inversion. We could probably also have removed this axiom.

Print Assumptions completeness_for_programs'.

(* - FunctionalExtensionality.functional_extensionality_dep *)

(* - JMeq.JMeq_eq *)

During the formalisation, many technical details had to be considered. Reasoning
about forest cardinalities was particularly difficult; even the on-paper proofs are very
tedious. The most annoying thing was that we could not derive a general substitution
lemma for (sub-)typings. We have only realised after completing the formalisation that
we could have derived these lemmas using the parametricity axiom mentioned above.
Using this axiom would have saved circa one thousand lines of technical boilerplate code.

B.8 Future mechanisation opportunities

As mentioned earlier, it would probably have been easier to formalise the call-by-push-
value variant of dℓPCF, which we developed after finishing the Coq mechanisation. Proving
the splitting and joining lemmas would have been considerably easier, and we would have
mechanised more general results.

We have started but not completed a proof of the uniformisation lemma (Lemma 5.55).
The corresponding subtyping lemma has been proved (as a variant of this has also been
used in the completeness proof).

spec proof comments

Init 425 314 57
PCF 1327 1288 167
dlPCF 2190 3138 492
Soundness 426 1650 171
Completeness 1673 4530 395
Total 6041 10920 1282

Table B.1: Lines of code

	Introduction
	Programming languages preliminaries
	System T
	Syntax of System T
	Semantics of System T
	Simple types
	Example terms

	The programming language PCF
	Call-by-value version (CBV)
	Call-by-name version (CBN)
	Simple types

	Call-by-push-value
	Syntax and semantics
	Simple typings
	Call-by-name translation
	Call-by-value translation

	I Coeffect systems
	Introduction
	A brief primer on BLL
	From BLL to dPCF
	Costs and weights
	Organisation of the remainder of this part

	Index terms (Lidx) and dlT
	Types of dlT (and dlPCFv)
	Index terms (Lidx) and constraints
	Modal sums
	Typing rules
	Meta theory
	Typing example
	Addition
	Multiplication

	Related work

	Review of dlPCFv
	Forest Cardinality
	Typing Rules
	Soundness
	Tight bounds and precise typings
	Completeness
	PCF skeletons
	The explosion typing rule
	Creating (bounded) sums
	Joining lemmas
	Converse substitution
	Subject expansion
	Completeness for programs
	Completeness for natural functions

	Embedding of dlT in dlPCFv

	Summary of dlPCFn
	Syntax of dlPCFn types
	(Bounded) sums
	Typing rules
	Soundness and completeness

	Call-by-push-value dlPCFpv
	dlPCFpv types
	Typing Rules
	Call-by-name translation
	Call-by-value translation
	Soundness of dlPCFpv
	Deriving soundness of dlPCFn and dlPCFv

	Completeness of dlPCFpv
	Preliminaries
	Converse substitution
	Subject expansion
	Completeness for programs
	Deriving completeness for dlPCFn and dlPCFv

	Conjunctives and disjunctives

	Compositionality and polymorphism
	Compositionality
	Examples

	Polymorphism
	Church encoding

	Compositionality and polymorphism

	II Effect Systems
	Introduction
	An effect system for System T: dfT
	Index terms (Lidx) and constraints
	Typing rules
	Soundness
	Effect parametricity
	Parametric Completeness
	Annotation Examples

	An effect system for call-by-push-value PCF
	Typing rules
	Soundness
	Semantic soundness
	Parametric Completeness
	Call-by-value version and embedding of dfT
	Annotation examples
	Extensions of dPCFpv
	Conjunctives and disjunctives
	Polymorphism

	III Conclusions
	Discussion and conclusions
	Verification and complexity analysis using (co-)effect-based type systems
	Combining dPCF and dfPCF
	Other applications of coeffect and effect systems
	Other approaches to verification and complexity analysis
	Future work

	dlPCFv Proofs
	Completeness
	Parametric Joining
	Subject Expansion

	Coq formalisation of dlPCFv
	Preliminaries
	Syntax and semantics of PCF
	Index terms, constraints, and types
	dPCFv typing rules
	Soundness
	Completeness
	Statistics
	Future mechanisation opportunities

